Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 27 Sayı: 3, 660 - 669, 30.06.2023
https://doi.org/10.16984/saufenbilder.1206303

Öz

Kaynakça

  • J. Singh, A. Arora, S. Basu, “Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light”, Journal of Alloys and Compounds, vol. 808, Article No: 151734, 2019.
  • M.M.J. Sadiq, U.vS. Shenoy, D.vK. Bhat, “NiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4- nitro phenol”, Journal of Physics and Chemistry of Solids, vol. 109, pp. 124-133, 2017.
  • M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, “Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review”, Critical Reviews in Environmental Science and Technology, vol. 48, pp. 806-857, 2018.
  • İ. Altın, M. Sökmen, Z. Bıyıklıoğlu, “Quaternized zinc(II) phthalocyanine-sensitized TiO2: surfactant-modified sol-gel synthesis, characterization and photocatalytic applications”, Desalination and Water Treatment, vol. 57, pp. 1-12, 2016.
  • Y.vM. Hunge, A.vA. Yadav, V.vL. Mathe, “Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation”, Ultrasonics Sonochemistry, vol. 45, pp. 116-122, 2018.
  • C.vB. Anucha, I. Altin, E. Bacaksiz, V. N. Stathopoulos, I. Polat, A. Yasar, Ö. F. Yüksel, “Silver doped zinc stannate (Ag-ZnSnO3) for the photocatalytic degradation of caffeine under UV irradiation”, Water, vol. 13(9), 1290, 2022.
  • V. Homem, L. Santos, “Degradation and removal methods of antibiotics from aqueous matrices - a review”, Journal of Environmental Management, vol. 92, pp. 2304-2347, 2011.
  • M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, “Science of the total environment adsorptive removal of antibiotics from water and wastewater : progress and challenges”, Science of the Total Environment, vol. 532, pp. 112-126, 2015.
  • J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes, Chemical Reviews, vol. 115, pp. 12888-12935, 2015.
  • S. J. Alyani, A. E. Pirbazari, F. E. Khalilsaraei, N. A. Kolur, N. Gilani, “Growing Co-doped TiO2 nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network”, Journal of Alloys and Compounds, vol. 799, pp. 169-182, 2019.
  • C. Karunakaran, V. Rajeswari, P. Gomathisankar, “Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO”, Solid State Sciences, vol.13, pp. 923- 928, 2011.
  • X. Hu, G. Li, J.C. Yu, “Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications”, Langmuir, vol. 26, pp. 3031-3039, 2010.
  • J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W.Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials”, Chemical Reviews, vol. 114, pp. 9919-9986, 2014.
  • S. Y. Lee, S. J. Park, “TiO2 photocatalyst for water treatment applications”, Journal of Industrial and Engineering Chemistry, vol. 19, pp. 1761-1769, 2013.
  • P. V. Laxma Reddy, B. Kavitha, P. A. Kumar Reddy, K. H. Kim, “TiO2-based photocatalytic disinfection of microbes in aqueous media: a review”, Environmental Research, vol. 154, pp. 296-303, 2017.
  • Y. Li, M. Ma, W. Chen, L. Li, M. Zen, “Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations”, Materials Chemistry and Physics, vol. 129, pp. 501-505, 2011.
  • D. Sannino, V. Vaiano, O. Sacco, P. Ciambelli, “Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation”, Journal of Environmental Chemical Engineering, vol. 1(1-2), pp. 56-60, 2013.
  • Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee, W. I. Lee, Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst, Journal of Physical Chemistry C, vol. 113, pp. 19179-19184, 2009.
  • C. B. Anucha, I. Altin, E. Bacaksiz, I. Degirmencioglu, T. Kucukomeroglu, S. Yılmaz, Vassilis N Stathopoulos, “Immobilized TiO2/ZnO sensitized copper (II) phthalocyanine heterostructure for the degradation of ibuprofen under UV irradiation”, Separations, vol. 24, pp. 1-21, 2021.
  • S. Neccaroğlu Işık, G. Gümrükçü Köse, O. Avcıata, “New phthalocyanine-TiO2 nanocomposites with photocatalyst properties”, Research on Chemical Intermediates, vol. 49, pp. 1629-1648, 2023.
  • İ. Altın, M. Sökmen, Z. Bıyıklıoğlu, “Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal”, Materials Science in Semiconductor Processing vol. 45, pp. 36-44, 2016.
  • Y. Ma, X. Yang, G. Gao, Z. Yan, H. Su, B. Zhang, “Photocatalytic partial oxidation of methanol to methyl formate under visible light irradiation on Bi doped”, RSC Advances, vol. 10, pp. 31442-31452, 2020. J.-J. Li S.-C. Cai, Z. Xu, X. Chen, J. Chen, H.-P. Jia, J. Chen, “Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light”, Journal of Hazardous Materials, vol. 325, pp 261-270, 2017.
  • J. Xu, W. Wang, M. Shang, E. Gao, Z. Zhang, J. Ren, “Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation”, Journal of Hazardous Materials, vol. 196 pp. 426-430, 2011.
  • S. Sood, S. Kumar Mehta, Ahmad Umar, S. Kumar Kansal, “The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles”, New Journal of Chemistry, vol. 38, pp. 3127-3136, 2014.
  • T. N. Ravishankar, M. de O. Vaz , S. R. Teixeira, “The effect of surfactant on sol-gel synthesis of CuO/TiO2 nanocomposites for the photocatalytic activities under UV-Visible and visible light illuminations”, New Journal of Chemistry, vol. 44, pp. 1888-1904, 2020.
  • I. Altin, “CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A”, Journal of Molecular Structure, vol. 1252, Article No: 132199, 2022.
  • L. Xu , L. Yang , E. M. J. Johansson , Y. Wang, P. Jin Photocatalytic activity and mechanism of bisphenol a removal over TiO2-x/rGO nanocomposite driven by visible light, Chemical Engineering Journal, vol. 350, pp. 1043-1055, 2018.
  • İ. Altın, M. Sökmen, “Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants”, Applied Catalysis B: Environmental, vol. 144, pp. 694-701, 2014.
  • C. Wang, L. Zhu, M. Wei, P. Chen, G. Shan, “Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water”, vol. 46, pp. 845-853, Water Research, 2012.
  • M. Antonopoulou, C. G. Skoutelis, C. Daikopoulos, Y. Deligiannakis, I. K. Konstantinou, “Probing the photolyticephotocatalytic degradation mechanism of DEET in the presence of natural or synthetic humic macromolecules using molecular-scavenging techniques and EPR spectroscopy”, Journal of Environmental Chemical Engineering, vol. 3, pp. 3005-3014, 2015.
  • I. Altin, X. Ma, V. Boffa, E. Bacaksız, G.Magnacca, “Hydrothermal preparation of B-TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiation”, Materials Science in Semiconductor Processing, 123, Article No: 105591.

Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity

Yıl 2023, Cilt: 27 Sayı: 3, 660 - 669, 30.06.2023
https://doi.org/10.16984/saufenbilder.1206303

Öz

This study is based on the preparation of TiO2 and bismuth doped TiO2 (Bi-TiO2) nanoparticles by surfactant-assisted sol-gel approach. The physiochemical characteristics of prepared samples were examined by X-ray diffraction technique (XRD), Fiel emission scanning electron microscopy-energy dispersive analysis (FESEM-EDS), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The XRD patterns revealed that the anatase crystal phase was only formed with high crystallinity. The band gap energies were measured to be of 3.11 eV for TiO2-2 and 3.02 eV for Bi-TiO2 by ultraviolet (UV)-visible diffuse reflectance spectroscopy, revealing that doping Bi improves the efficient interactive relation of the catalyst with visible light. Also, EDS results confirm that Bi particles are immobilized on the surface of TiO2 successfully. The activities of the catalysts were tested by photocatalytic degradation of methylene blue (MB) under the visible light. Bi-TiO2 photocatalyst could achieve the best MB degradation percentage of 70.2% after 180 min. of visible irradiation. Additionally, effect of some experimental parameters such as effect of humic acid (HA) and pH has been evaluated as much as reusability of catalyst. The characterization results confirmed the successful and desired preparation of the catalysts. The Bi-TiO2 presented significant visible light response photocatalytic activity for the degradation of MB.

Kaynakça

  • J. Singh, A. Arora, S. Basu, “Synthesis of coral like WO3/g-C3N4 nanocomposites for the removal of hazardous dyes under visible light”, Journal of Alloys and Compounds, vol. 808, Article No: 151734, 2019.
  • M.M.J. Sadiq, U.vS. Shenoy, D.vK. Bhat, “NiWO4-ZnO-NRGO ternary nanocomposite as an efficient photocatalyst for degradation of methylene blue and reduction of 4- nitro phenol”, Journal of Physics and Chemistry of Solids, vol. 109, pp. 124-133, 2017.
  • M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, “Magnetically separable nanocomposites based on ZnO and their applications in photocatalytic processes: a review”, Critical Reviews in Environmental Science and Technology, vol. 48, pp. 806-857, 2018.
  • İ. Altın, M. Sökmen, Z. Bıyıklıoğlu, “Quaternized zinc(II) phthalocyanine-sensitized TiO2: surfactant-modified sol-gel synthesis, characterization and photocatalytic applications”, Desalination and Water Treatment, vol. 57, pp. 1-12, 2016.
  • Y.vM. Hunge, A.vA. Yadav, V.vL. Mathe, “Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation”, Ultrasonics Sonochemistry, vol. 45, pp. 116-122, 2018.
  • C.vB. Anucha, I. Altin, E. Bacaksiz, V. N. Stathopoulos, I. Polat, A. Yasar, Ö. F. Yüksel, “Silver doped zinc stannate (Ag-ZnSnO3) for the photocatalytic degradation of caffeine under UV irradiation”, Water, vol. 13(9), 1290, 2022.
  • V. Homem, L. Santos, “Degradation and removal methods of antibiotics from aqueous matrices - a review”, Journal of Environmental Management, vol. 92, pp. 2304-2347, 2011.
  • M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, “Science of the total environment adsorptive removal of antibiotics from water and wastewater : progress and challenges”, Science of the Total Environment, vol. 532, pp. 112-126, 2015.
  • J. L. White, M. F. Baruch, J. E. Pander, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes, Chemical Reviews, vol. 115, pp. 12888-12935, 2015.
  • S. J. Alyani, A. E. Pirbazari, F. E. Khalilsaraei, N. A. Kolur, N. Gilani, “Growing Co-doped TiO2 nanosheets on reduced graphene oxide for efficient photocatalytic removal of tetracycline antibiotic from aqueous solution and modeling the process by artificial neural network”, Journal of Alloys and Compounds, vol. 799, pp. 169-182, 2019.
  • C. Karunakaran, V. Rajeswari, P. Gomathisankar, “Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO”, Solid State Sciences, vol.13, pp. 923- 928, 2011.
  • X. Hu, G. Li, J.C. Yu, “Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications”, Langmuir, vol. 26, pp. 3031-3039, 2010.
  • J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W.Bahnemann, “Understanding TiO2 photocatalysis: mechanisms and materials”, Chemical Reviews, vol. 114, pp. 9919-9986, 2014.
  • S. Y. Lee, S. J. Park, “TiO2 photocatalyst for water treatment applications”, Journal of Industrial and Engineering Chemistry, vol. 19, pp. 1761-1769, 2013.
  • P. V. Laxma Reddy, B. Kavitha, P. A. Kumar Reddy, K. H. Kim, “TiO2-based photocatalytic disinfection of microbes in aqueous media: a review”, Environmental Research, vol. 154, pp. 296-303, 2017.
  • Y. Li, M. Ma, W. Chen, L. Li, M. Zen, “Preparation of Ag-doped TiO2 nanoparticles by a miniemulsion method and their photoactivity in visible light illuminations”, Materials Chemistry and Physics, vol. 129, pp. 501-505, 2011.
  • D. Sannino, V. Vaiano, O. Sacco, P. Ciambelli, “Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation”, Journal of Environmental Chemical Engineering, vol. 1(1-2), pp. 56-60, 2013.
  • Y. J. Kim, B. Gao, S. Y. Han, M. H. Jung, A. K. Chakraborty, T. Ko, C. Lee, W. I. Lee, Heterojunction of FeTiO3 Nanodisc and TiO2 Nanoparticle for a Novel Visible Light Photocatalyst, Journal of Physical Chemistry C, vol. 113, pp. 19179-19184, 2009.
  • C. B. Anucha, I. Altin, E. Bacaksiz, I. Degirmencioglu, T. Kucukomeroglu, S. Yılmaz, Vassilis N Stathopoulos, “Immobilized TiO2/ZnO sensitized copper (II) phthalocyanine heterostructure for the degradation of ibuprofen under UV irradiation”, Separations, vol. 24, pp. 1-21, 2021.
  • S. Neccaroğlu Işık, G. Gümrükçü Köse, O. Avcıata, “New phthalocyanine-TiO2 nanocomposites with photocatalyst properties”, Research on Chemical Intermediates, vol. 49, pp. 1629-1648, 2023.
  • İ. Altın, M. Sökmen, Z. Bıyıklıoğlu, “Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal”, Materials Science in Semiconductor Processing vol. 45, pp. 36-44, 2016.
  • Y. Ma, X. Yang, G. Gao, Z. Yan, H. Su, B. Zhang, “Photocatalytic partial oxidation of methanol to methyl formate under visible light irradiation on Bi doped”, RSC Advances, vol. 10, pp. 31442-31452, 2020. J.-J. Li S.-C. Cai, Z. Xu, X. Chen, J. Chen, H.-P. Jia, J. Chen, “Solvothermal syntheses of Bi and Zn co-doped TiO2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light”, Journal of Hazardous Materials, vol. 325, pp 261-270, 2017.
  • J. Xu, W. Wang, M. Shang, E. Gao, Z. Zhang, J. Ren, “Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation”, Journal of Hazardous Materials, vol. 196 pp. 426-430, 2011.
  • S. Sood, S. Kumar Mehta, Ahmad Umar, S. Kumar Kansal, “The visible light-driven photocatalytic degradation of Alizarin red S using Bi-doped TiO2 nanoparticles”, New Journal of Chemistry, vol. 38, pp. 3127-3136, 2014.
  • T. N. Ravishankar, M. de O. Vaz , S. R. Teixeira, “The effect of surfactant on sol-gel synthesis of CuO/TiO2 nanocomposites for the photocatalytic activities under UV-Visible and visible light illuminations”, New Journal of Chemistry, vol. 44, pp. 1888-1904, 2020.
  • I. Altin, “CuO-TiO2/graphene ternary nanocomposite for highly efficient visible-light-driven photocatalytic degradation of bisphenol A”, Journal of Molecular Structure, vol. 1252, Article No: 132199, 2022.
  • L. Xu , L. Yang , E. M. J. Johansson , Y. Wang, P. Jin Photocatalytic activity and mechanism of bisphenol a removal over TiO2-x/rGO nanocomposite driven by visible light, Chemical Engineering Journal, vol. 350, pp. 1043-1055, 2018.
  • İ. Altın, M. Sökmen, “Preparation of TiO2-polystyrene photocatalyst from waste material and its usability for removal of various pollutants”, Applied Catalysis B: Environmental, vol. 144, pp. 694-701, 2014.
  • C. Wang, L. Zhu, M. Wei, P. Chen, G. Shan, “Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water”, vol. 46, pp. 845-853, Water Research, 2012.
  • M. Antonopoulou, C. G. Skoutelis, C. Daikopoulos, Y. Deligiannakis, I. K. Konstantinou, “Probing the photolyticephotocatalytic degradation mechanism of DEET in the presence of natural or synthetic humic macromolecules using molecular-scavenging techniques and EPR spectroscopy”, Journal of Environmental Chemical Engineering, vol. 3, pp. 3005-3014, 2015.
  • I. Altin, X. Ma, V. Boffa, E. Bacaksız, G.Magnacca, “Hydrothermal preparation of B-TiO2-graphene oxide ternary nanocomposite, characterization and photocatalytic degradation of bisphenol A under simulated solar irradiation”, Materials Science in Semiconductor Processing, 123, Article No: 105591.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

İlknur Altın 0000-0002-9859-3611

Erken Görünüm Tarihi 22 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 17 Kasım 2022
Kabul Tarihi 30 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 3

Kaynak Göster

APA Altın, İ. (2023). Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity. Sakarya University Journal of Science, 27(3), 660-669. https://doi.org/10.16984/saufenbilder.1206303
AMA Altın İ. Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity. SAUJS. Haziran 2023;27(3):660-669. doi:10.16984/saufenbilder.1206303
Chicago Altın, İlknur. “Bi Doped TiO2 As a Photocatalyst for Enhanced Photocatalytic Activity”. Sakarya University Journal of Science 27, sy. 3 (Haziran 2023): 660-69. https://doi.org/10.16984/saufenbilder.1206303.
EndNote Altın İ (01 Haziran 2023) Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity. Sakarya University Journal of Science 27 3 660–669.
IEEE İ. Altın, “Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity”, SAUJS, c. 27, sy. 3, ss. 660–669, 2023, doi: 10.16984/saufenbilder.1206303.
ISNAD Altın, İlknur. “Bi Doped TiO2 As a Photocatalyst for Enhanced Photocatalytic Activity”. Sakarya University Journal of Science 27/3 (Haziran 2023), 660-669. https://doi.org/10.16984/saufenbilder.1206303.
JAMA Altın İ. Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity. SAUJS. 2023;27:660–669.
MLA Altın, İlknur. “Bi Doped TiO2 As a Photocatalyst for Enhanced Photocatalytic Activity”. Sakarya University Journal of Science, c. 27, sy. 3, 2023, ss. 660-9, doi:10.16984/saufenbilder.1206303.
Vancouver Altın İ. Bi Doped TiO2 as a Photocatalyst for Enhanced Photocatalytic Activity. SAUJS. 2023;27(3):660-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.