Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 27 Sayı: 4, 724 - 734, 25.08.2023
https://doi.org/10.16984/saufenbilder.1183741

Öz

Destekleyen Kurum

Balıkesir Elektromekanik Sanayi Tesisleri A.Ş.

Teşekkür

Doç. Dr. Aslan Deniz Karaoğlan

Kaynakça

  • I. Wadi, R. Balendra, “Using neural networks to model the blanking process,” Journal of Materials Processing Technology, vol. 91, no. 1, pp. 52–65, Jun. 1999.
  • P. Baudouin, M. de Wulf, L. Kestens, Y. Houbaert, “The effect of the guillotine clearance on the magnetic properties of electrical steels,” Journal of Magnetism and Magnetic Materials, vol. 256, no. 1–3, pp. 32–40, Jan. 2003.
  • A. Peksoz, S. Erdem, N. Derebasi, “Mathematical model for cutting effect on magnetic flux distribution near the cut edge of non-oriented electrical steels,” Computational Materials Science, vol. 43, no. 4, pp. 1066–1068, Oct. 2008.
  • E. S. Al-Momani, A. T. Mayyas, I. Rawabdeh, R. Alqudah, “Modeling blanking process using multiple regression analysis and artificial neural networks,” Journal of Materials Engineering and Performance, vol. 21, no. 8, 2012.
  • N. A. K. Bashah, N. Muhamad, B. Md Deros, A. Zakaria, S. Ashari, A. Mobin, M. S. M. A. Lazat, “Multi-regression modelling for spring-back effect on automotive body in white stamped parts,” Materials and Design, vol. 46, pp. 175–190, Apr. 2013.
  • A. D. Karaoglan, N. Celik, “A new painting process for vessel radiators of transformer: wet-on-wet,” Journal of Applied Statistics, vol. 43, no. 2, pp. 370–386, 2016.
  • J. Park, M. Kil, J. Kim, B. Kang, “A Predictive Model of Flexibly-reconfigurable Roll Forming Process using Regression Analysis” Procedia Engineering, pp. 1266–1271, 2017.
  • O. Cavusoglu, H. Gürün, “The relationship of burr height and blanking force with clearance in the blanking process of AA5754 aluminium alloy,” Transactions of Famena, vol. 41, no. 1, pp. 55–62, 2017.
  • T. Y. Badgujar, V. P. Wani, “Stamping Process Parameter Optimization with Multiple Regression Analysis Approach,” in Materials Today: Proceedings, Elsevier Ltd, 2018, pp. 4498–4507.
  • L. Bohdal, R. Patyk, K. Tandecka, S. Gontarz, D. Jackiewicz, “Influence of shear-slitting parameters on workpiece formation, cut edge quality and selected magnetic properties for grain-oriented silicon steel,” Journal of Manufacturing Process, vol. 56, pp. 1007–1026, Aug. 2020.
  • T. Zhou, L. He, Z. Zou, F. Du, J. Wu, P. Tian, “Three-dimensional turning force prediction based on hybrid finite element and predictive machining theory considering edge radius and nose radius,” Journal of Manufacturing Process, vol. 58, pp. 1304–1317, 2020.
  • S. Neseli, I. Asilturk, L. Celik, “Determining the optimum process parameter for grinding operations using robust process,” Journal of Mechanical Science and Technology, vol. 26, no. 11, pp. 3587–3595, 2012.
  • Z. Patonai, R. Kicsiny, G. Géczi, “Multiple linear regressionbased model for the indoor temperature of mobile containers,” Heliyon, vol. 8, no. 12, Dec. 2022.
  • M. Hanief, M. F. Wani, M. S. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis,” Engineering Science and Technology, an International Journal, vol. 20, no. 3, pp. 1220–1226, 2017.
  • H. W. Lee, W. T. Kwon, “Determination of the minute range for RSM to select the optimum cutting conditions during turning on CNC lathe,” Journal of Mechanical Science and Technology, vol. 24, no. 8, pp. 1637–1645, 2010.
  • D. R. Patel, M. B. Kiran, V. Vakharia, “Modeling and prediction of surface roughness using multiple regressions: A noncontact approach,” Engineering Reports, vol. 2, no. 2, Feb. 2020.

Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling

Yıl 2023, Cilt: 27 Sayı: 4, 724 - 734, 25.08.2023
https://doi.org/10.16984/saufenbilder.1183741

Öz

This article proposes a regression model for the shear-cutting process of grain-oriented electrical steel magnetic cores of transformers made from different gages and magnetic properties of steels. In the experimental runs, 3 levels for thickness (230, 270, and 300 µm) and 4 levels for magnetic features of electrical steels are considered. Core steels are supplied as foils and slit to designed lengths in slitting machinery along the rolling direction of coils. The best magnetic features rely on the rolling direction of the coil and the transverse direction of the coil is subject to the shear-cutting process. The result of cutting operations, discontinuities, and degradations in magnetic properties may occur because of deterioration in crystallography and strain gradation on laminated sheets. Shear-cutting process factors have a strong influence on magnetic degradation even the magnitude of the no-load loss of the transformer core. In this study, the mathematical relation between shear cutting factors sheet thickness ST, counts of hits CH, and the response burr length BL is determined using regression modeling. For this purpose, the process parameters of GEORG TBA 400 cut-to-length machinery in use core production is studied. The calculated coefficient of determination is close to almost 1.00 i.e., R2 = 0.9896 which means the factors are sufficient to model the response, and the model is obtained with a good prediction performance. The aim of the present study is building up a useful process control tool for the machinery and raise a discussion alike process in industry.

Kaynakça

  • I. Wadi, R. Balendra, “Using neural networks to model the blanking process,” Journal of Materials Processing Technology, vol. 91, no. 1, pp. 52–65, Jun. 1999.
  • P. Baudouin, M. de Wulf, L. Kestens, Y. Houbaert, “The effect of the guillotine clearance on the magnetic properties of electrical steels,” Journal of Magnetism and Magnetic Materials, vol. 256, no. 1–3, pp. 32–40, Jan. 2003.
  • A. Peksoz, S. Erdem, N. Derebasi, “Mathematical model for cutting effect on magnetic flux distribution near the cut edge of non-oriented electrical steels,” Computational Materials Science, vol. 43, no. 4, pp. 1066–1068, Oct. 2008.
  • E. S. Al-Momani, A. T. Mayyas, I. Rawabdeh, R. Alqudah, “Modeling blanking process using multiple regression analysis and artificial neural networks,” Journal of Materials Engineering and Performance, vol. 21, no. 8, 2012.
  • N. A. K. Bashah, N. Muhamad, B. Md Deros, A. Zakaria, S. Ashari, A. Mobin, M. S. M. A. Lazat, “Multi-regression modelling for spring-back effect on automotive body in white stamped parts,” Materials and Design, vol. 46, pp. 175–190, Apr. 2013.
  • A. D. Karaoglan, N. Celik, “A new painting process for vessel radiators of transformer: wet-on-wet,” Journal of Applied Statistics, vol. 43, no. 2, pp. 370–386, 2016.
  • J. Park, M. Kil, J. Kim, B. Kang, “A Predictive Model of Flexibly-reconfigurable Roll Forming Process using Regression Analysis” Procedia Engineering, pp. 1266–1271, 2017.
  • O. Cavusoglu, H. Gürün, “The relationship of burr height and blanking force with clearance in the blanking process of AA5754 aluminium alloy,” Transactions of Famena, vol. 41, no. 1, pp. 55–62, 2017.
  • T. Y. Badgujar, V. P. Wani, “Stamping Process Parameter Optimization with Multiple Regression Analysis Approach,” in Materials Today: Proceedings, Elsevier Ltd, 2018, pp. 4498–4507.
  • L. Bohdal, R. Patyk, K. Tandecka, S. Gontarz, D. Jackiewicz, “Influence of shear-slitting parameters on workpiece formation, cut edge quality and selected magnetic properties for grain-oriented silicon steel,” Journal of Manufacturing Process, vol. 56, pp. 1007–1026, Aug. 2020.
  • T. Zhou, L. He, Z. Zou, F. Du, J. Wu, P. Tian, “Three-dimensional turning force prediction based on hybrid finite element and predictive machining theory considering edge radius and nose radius,” Journal of Manufacturing Process, vol. 58, pp. 1304–1317, 2020.
  • S. Neseli, I. Asilturk, L. Celik, “Determining the optimum process parameter for grinding operations using robust process,” Journal of Mechanical Science and Technology, vol. 26, no. 11, pp. 3587–3595, 2012.
  • Z. Patonai, R. Kicsiny, G. Géczi, “Multiple linear regressionbased model for the indoor temperature of mobile containers,” Heliyon, vol. 8, no. 12, Dec. 2022.
  • M. Hanief, M. F. Wani, M. S. Charoo, “Modeling and prediction of cutting forces during the turning of red brass (C23000) using ANN and regression analysis,” Engineering Science and Technology, an International Journal, vol. 20, no. 3, pp. 1220–1226, 2017.
  • H. W. Lee, W. T. Kwon, “Determination of the minute range for RSM to select the optimum cutting conditions during turning on CNC lathe,” Journal of Mechanical Science and Technology, vol. 24, no. 8, pp. 1637–1645, 2010.
  • D. R. Patel, M. B. Kiran, V. Vakharia, “Modeling and prediction of surface roughness using multiple regressions: A noncontact approach,” Engineering Reports, vol. 2, no. 2, Feb. 2020.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Nihat Celık 0000-0002-0855-8055

Alaaddin Toktaş 0000-0002-9902-6969

Erken Görünüm Tarihi 19 Ağustos 2023
Yayımlanma Tarihi 25 Ağustos 2023
Gönderilme Tarihi 3 Ekim 2022
Kabul Tarihi 13 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 4

Kaynak Göster

APA Celık, N., & Toktaş, A. (2023). Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling. Sakarya University Journal of Science, 27(4), 724-734. https://doi.org/10.16984/saufenbilder.1183741
AMA Celık N, Toktaş A. Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling. SAUJS. Ağustos 2023;27(4):724-734. doi:10.16984/saufenbilder.1183741
Chicago Celık, Nihat, ve Alaaddin Toktaş. “Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling”. Sakarya University Journal of Science 27, sy. 4 (Ağustos 2023): 724-34. https://doi.org/10.16984/saufenbilder.1183741.
EndNote Celık N, Toktaş A (01 Ağustos 2023) Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling. Sakarya University Journal of Science 27 4 724–734.
IEEE N. Celık ve A. Toktaş, “Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling”, SAUJS, c. 27, sy. 4, ss. 724–734, 2023, doi: 10.16984/saufenbilder.1183741.
ISNAD Celık, Nihat - Toktaş, Alaaddin. “Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling”. Sakarya University Journal of Science 27/4 (Ağustos 2023), 724-734. https://doi.org/10.16984/saufenbilder.1183741.
JAMA Celık N, Toktaş A. Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling. SAUJS. 2023;27:724–734.
MLA Celık, Nihat ve Alaaddin Toktaş. “Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling”. Sakarya University Journal of Science, c. 27, sy. 4, 2023, ss. 724-3, doi:10.16984/saufenbilder.1183741.
Vancouver Celık N, Toktaş A. Mathematical Modelling of Shear Cutting Process of Grain Oriented Electrical Steels Using Regression Modelling. SAUJS. 2023;27(4):724-3.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.