Araştırma Makalesi
BibTex RIS Kaynak Göster

Production Methods Effect on Nanosilica Properties

Yıl 2023, Cilt: 27 Sayı: 6, 1286 - 1299, 18.12.2023
https://doi.org/10.16984/saufenbilder.1220994

Öz

This study explored nanosilica synthesis using colloidal silica, silica sand, and TEOS, utilizing rotary evaporator drying, sol-gel, and titration methods. It examined the influence of these techniques on silica’s functionalization and mechanical properties. Methacryloxypropyl trimethoxysilane was employed for silanation, with silica characterized using various analytical methods. Particle sizes from SEM images were 19 nm and 14 nm for rotary and sol-gel samples, respectively, while titration samples showed an irregular structure. Zetasizer analysis revealed larger particle sizes. The purity of silica powders ranged from 90% to 99%, and titration samples demonstrated the highest silanability. When used in dental composites, rotary-evaporated silica displayed promising suitability based on its mechanical and physical properties.

Destekleyen Kurum

TÜBİTAK TEYDEB ve Yıldız Teknik Üniversitesi, Bilimsel araştırma Projeleri Koordinatörlüğü

Proje Numarası

TÜBİTAK Proje Numarası 5190009, YTU BAP Proje Numarası FYL-2019-3598

Teşekkür

This study was supported within the scope of TÜBİTAK TEYDEB University-Industry Cooperation project number 5190009 and Yıldız Technical University Scientific Research Project Coordinator's project numbered FYL-2019-3598.

Kaynakça

  • [1] R. K. Ravi, R. K. Alla, M. Shammas, A. Devarhubli, “Dental Composites-A Versatile Restorative Material: An Overview.,” Indian Journal of Dental Sciences, vol. 5, no. 5, 2013.
  • [2] M. Sozzi, C. Fornaini, G. Lagori, E. Merigo, A. Cucinotta, P. Vescovi, S. Selleri, “Dental composite polymerization: a three different sources comparison,” in Lasers in Dentistry XXI, SPIE, 2015, pp. 25–29.
  • [3] A. Patodiya, M. N. Hegde, “Dental composites: past, present and future,” National Journal of Community Medicine, vol. 3, no. 04, pp. 754–756, 2012.
  • [4] M. M. Karabela, I. D. Sideridou, “Synthesis and study of properties of dental resin composites with different nanosilica particles size,” Dental materials, vol. 27, no. 8, pp. 825–835, 2011.
  • [5] V. L. Snoeyink, W. J. WEBER JR, “Surface functional groups on carbon and silica,” in Progress in Surface and Membrane Science, vol. 5, Elsevier, 1972, pp. 63–119.
  • [6] J. Jiang, J. Cao, W. Wang, J. Xue, “How silanization influences aggregation and moisture sorption behaviours of silanized silica: analysis of porosity and multilayer moisture adsorption,” Royal Society Open Science, vol. 5, no. 6, p. 180206, 2018.
  • [7] J. P. Matinlinna, C. Y. K. Lung, J. K. H. Tsoi, “Silane adhesion mechanism in dental applications and surface treatments: A review,” Dental materials, vol. 34, no. 1, pp. 13–28, 2018.
  • [8] P. Jiangkongkho, M. Arksornnukit, H. Takahashi, “The synthesis, modification, and application of nanosilica in polymethyl methacrylate denture base,” Dental Materials Journal, vol. 37, no. 4, pp. 582–591, 2018.
  • [9] A. Aydınoğlu, A. B. H. Yoruç, “Effects of silane-modified fillers on properties of dental composite resin,” Materials Science and Engineering: C, vol. 79, pp. 382–389, 2017.
  • [10] I. A. Rahman, V. Padavettan, “Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review,” Journal of Nanomaterials, vol. 2012, p. 8, 2012.
  • [11] I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, C. K. Chee, “Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process,” Ceramics International, vol. 34, no. 8, pp. 2059–2066, 2008.
  • [12] D.-L. Yang, Q. Sun, H. Niu, R.-L. Wang, D. Wang, J.-X. Wang, “The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: Effects of heat treatment and filler composition,” Composites Part B: Engineering, vol. 186, p. 107791, 2020.
  • [13] B. Öztürk, M. Yavuz, A. Aydınoğlu, O. Güven, A. B. Y. Hazar, “Effect of different drying techniques on silaning efficiency,” Ceramics International, 2021.
  • [14] A. Siebold, A. Walliser, M. Nardin, M. Oppliger, J. Schultz, “Capillary rise for thermodynamic characterization of solid particle surface,” Journal of Colloid and Interface Science, vol. 186, no. 1, pp. 60–70, 1997.
  • [15] M. O. Kangal, G. Bulut, O. Guven, “Physicochemical characterization of natural wollastonite and calcite,” Minerals, vol. 10, no. 3, p. 228, 2020.
  • [16] I. M. Joni, L. Nulhakim, M. Vanitha, C. Panatarani, “Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor,” in Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012006.
  • [17] Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang “Mesoporous silica nanoparticles in drug delivery and biomedical applications,” Nanomedicine, vol. 11, no. 2, pp. 313– 327, 2015.
  • [18] R. A. Bakar, R. Yahya, S. N. Gan, “Production of high purity amorphous silica from rice husk,” Procedia Chemistry, vol. 19, pp. 189–195, 2016.
  • [19] B. Neirinck, J. Van Deursen, O. Van der Biest, J. Vleugels, “Wettability assessment of submicrometer alumina powder using a modified washburn method,” Journal of the American Ceramic Society, vol. 93, no. 9, pp. 2515–2518, 2010.
  • [20] H. A. Rodríguez, W. M. Kriven, H. Casanova, “Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state,” Materials Science and Engineering: C, vol. 101, pp. 274– 282, 2019.
Yıl 2023, Cilt: 27 Sayı: 6, 1286 - 1299, 18.12.2023
https://doi.org/10.16984/saufenbilder.1220994

Öz

Bu çalışmada kolloidal silika, silika kumu ve TEOS hammaddeleri kullanılarak nanosilika sentezlenmiştir. Sentez yöntemi olarak döner buharlaştırıcı kurutma (R), Sol-jel (S) ve titrasyon (T) yöntemleri kullanılmıştır. Aynı zamanda farklı üretim tekniklerinin silikanın fonksiyonelleştirilmesine katkısı araştırılmıştır. Silanlama çalışmalarında silan ajanı olarak metakriloksipropil trimetoksisilan kullanılmıştır. Silika karakterizasyonu, X-ışını kırınımı, yüksek çözünürlüklü taramalı elektron mikroskobu, endüktif olarak birleştirilmiş plazma-kütle spektrometresi Fourier dönüşümü kızılötesi spektroskopisi, Zetasizer ve ıslanabilirlik ölçümü kullanılarak yapıldı. SEM görüntüsünde belirlenen silika partikül boyutu RE ve S numunelerinin partikül boyutu sırasıyla 19 nm, 14 nm ve T numunesi düzensiz bir yapıya sahip olduğundan partikül boyutu ölçülememiştir. Zetasizer analizinde partikül boyutu sırasıyla 107 nm, 181 nm ve 184 nm olarak ölçüldü. Silika tozlarının saflıkları ICP-MS analizi ile belirlenmiş ve saflık değerleri %90-99 arasında bulunmuştur. Silikanın silanlanabilirliği FT-IR ve ıslanabilirlik ölçümleri ile değerlendirilmiş ve sonucunda T numunesinde ıslanabilirliğin en iyi olduğu belirlenmiştir. Böylece T örneğinin daha fazla silan ajanı ile bağlanabileceği düşünülmektedir. Bu makalede, elde edilen silika tozları dental kompozitlerde destek fazı olarak kullanılmış ve kullanılan destek fazlarının mekanik ve fiziksel özellikler üzerindeki etkileri incelenmiştir. Bu incelemeler sonucunda dental kompozitlerde kullanıma uygun RE-sentezlenmiş silika olduğu belirlenmiştir.

Proje Numarası

TÜBİTAK Proje Numarası 5190009, YTU BAP Proje Numarası FYL-2019-3598

Kaynakça

  • [1] R. K. Ravi, R. K. Alla, M. Shammas, A. Devarhubli, “Dental Composites-A Versatile Restorative Material: An Overview.,” Indian Journal of Dental Sciences, vol. 5, no. 5, 2013.
  • [2] M. Sozzi, C. Fornaini, G. Lagori, E. Merigo, A. Cucinotta, P. Vescovi, S. Selleri, “Dental composite polymerization: a three different sources comparison,” in Lasers in Dentistry XXI, SPIE, 2015, pp. 25–29.
  • [3] A. Patodiya, M. N. Hegde, “Dental composites: past, present and future,” National Journal of Community Medicine, vol. 3, no. 04, pp. 754–756, 2012.
  • [4] M. M. Karabela, I. D. Sideridou, “Synthesis and study of properties of dental resin composites with different nanosilica particles size,” Dental materials, vol. 27, no. 8, pp. 825–835, 2011.
  • [5] V. L. Snoeyink, W. J. WEBER JR, “Surface functional groups on carbon and silica,” in Progress in Surface and Membrane Science, vol. 5, Elsevier, 1972, pp. 63–119.
  • [6] J. Jiang, J. Cao, W. Wang, J. Xue, “How silanization influences aggregation and moisture sorption behaviours of silanized silica: analysis of porosity and multilayer moisture adsorption,” Royal Society Open Science, vol. 5, no. 6, p. 180206, 2018.
  • [7] J. P. Matinlinna, C. Y. K. Lung, J. K. H. Tsoi, “Silane adhesion mechanism in dental applications and surface treatments: A review,” Dental materials, vol. 34, no. 1, pp. 13–28, 2018.
  • [8] P. Jiangkongkho, M. Arksornnukit, H. Takahashi, “The synthesis, modification, and application of nanosilica in polymethyl methacrylate denture base,” Dental Materials Journal, vol. 37, no. 4, pp. 582–591, 2018.
  • [9] A. Aydınoğlu, A. B. H. Yoruç, “Effects of silane-modified fillers on properties of dental composite resin,” Materials Science and Engineering: C, vol. 79, pp. 382–389, 2017.
  • [10] I. A. Rahman, V. Padavettan, “Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review,” Journal of Nanomaterials, vol. 2012, p. 8, 2012.
  • [11] I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail, C. K. Chee, “Effect of the drying techniques on the morphology of silica nanoparticles synthesized via sol–gel process,” Ceramics International, vol. 34, no. 8, pp. 2059–2066, 2008.
  • [12] D.-L. Yang, Q. Sun, H. Niu, R.-L. Wang, D. Wang, J.-X. Wang, “The properties of dental resin composites reinforced with silica colloidal nanoparticle clusters: Effects of heat treatment and filler composition,” Composites Part B: Engineering, vol. 186, p. 107791, 2020.
  • [13] B. Öztürk, M. Yavuz, A. Aydınoğlu, O. Güven, A. B. Y. Hazar, “Effect of different drying techniques on silaning efficiency,” Ceramics International, 2021.
  • [14] A. Siebold, A. Walliser, M. Nardin, M. Oppliger, J. Schultz, “Capillary rise for thermodynamic characterization of solid particle surface,” Journal of Colloid and Interface Science, vol. 186, no. 1, pp. 60–70, 1997.
  • [15] M. O. Kangal, G. Bulut, O. Guven, “Physicochemical characterization of natural wollastonite and calcite,” Minerals, vol. 10, no. 3, p. 228, 2020.
  • [16] I. M. Joni, L. Nulhakim, M. Vanitha, C. Panatarani, “Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor,” in Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012006.
  • [17] Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang, S. Wang “Mesoporous silica nanoparticles in drug delivery and biomedical applications,” Nanomedicine, vol. 11, no. 2, pp. 313– 327, 2015.
  • [18] R. A. Bakar, R. Yahya, S. N. Gan, “Production of high purity amorphous silica from rice husk,” Procedia Chemistry, vol. 19, pp. 189–195, 2016.
  • [19] B. Neirinck, J. Van Deursen, O. Van der Biest, J. Vleugels, “Wettability assessment of submicrometer alumina powder using a modified washburn method,” Journal of the American Ceramic Society, vol. 93, no. 9, pp. 2515–2518, 2010.
  • [20] H. A. Rodríguez, W. M. Kriven, H. Casanova, “Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state,” Materials Science and Engineering: C, vol. 101, pp. 274– 282, 2019.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Aysu Aydınoğlu 0000-0002-1875-2249

Büşra Öztürk 0000-0002-2250-8134

Afife Binnaz Hazar Yoruç 0000-0001-7281-2305

Proje Numarası TÜBİTAK Proje Numarası 5190009, YTU BAP Proje Numarası FYL-2019-3598
Erken Görünüm Tarihi 1 Aralık 2023
Yayımlanma Tarihi 18 Aralık 2023
Gönderilme Tarihi 21 Aralık 2022
Kabul Tarihi 17 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 6

Kaynak Göster

APA Aydınoğlu, A., Öztürk, B., & Hazar Yoruç, A. B. (2023). Production Methods Effect on Nanosilica Properties. Sakarya University Journal of Science, 27(6), 1286-1299. https://doi.org/10.16984/saufenbilder.1220994
AMA Aydınoğlu A, Öztürk B, Hazar Yoruç AB. Production Methods Effect on Nanosilica Properties. SAUJS. Aralık 2023;27(6):1286-1299. doi:10.16984/saufenbilder.1220994
Chicago Aydınoğlu, Aysu, Büşra Öztürk, ve Afife Binnaz Hazar Yoruç. “Production Methods Effect on Nanosilica Properties”. Sakarya University Journal of Science 27, sy. 6 (Aralık 2023): 1286-99. https://doi.org/10.16984/saufenbilder.1220994.
EndNote Aydınoğlu A, Öztürk B, Hazar Yoruç AB (01 Aralık 2023) Production Methods Effect on Nanosilica Properties. Sakarya University Journal of Science 27 6 1286–1299.
IEEE A. Aydınoğlu, B. Öztürk, ve A. B. Hazar Yoruç, “Production Methods Effect on Nanosilica Properties”, SAUJS, c. 27, sy. 6, ss. 1286–1299, 2023, doi: 10.16984/saufenbilder.1220994.
ISNAD Aydınoğlu, Aysu vd. “Production Methods Effect on Nanosilica Properties”. Sakarya University Journal of Science 27/6 (Aralık 2023), 1286-1299. https://doi.org/10.16984/saufenbilder.1220994.
JAMA Aydınoğlu A, Öztürk B, Hazar Yoruç AB. Production Methods Effect on Nanosilica Properties. SAUJS. 2023;27:1286–1299.
MLA Aydınoğlu, Aysu vd. “Production Methods Effect on Nanosilica Properties”. Sakarya University Journal of Science, c. 27, sy. 6, 2023, ss. 1286-99, doi:10.16984/saufenbilder.1220994.
Vancouver Aydınoğlu A, Öztürk B, Hazar Yoruç AB. Production Methods Effect on Nanosilica Properties. SAUJS. 2023;27(6):1286-99.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.