Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries

Yıl 2023, Cilt: 27 Sayı: 6, 1379 - 1388, 18.12.2023
https://doi.org/10.16984/saufenbilder.1336352

Öz

This study has investigated the effect of 2-dimensional (2D) beta borophene as a cathode additive for all-solid-state lithium-sulfur batteries. The comparisons have been carried out regarding the impact on ionic conductivity based on borophene content. Although the studies of borophene's contributions in the literature on the anode component, this study focuses on the cathode contribution for the first time. While MoS2 has been selected as the cathode active material, carbon black has been selected as the electrical conductor, and Li7P3S11 solid electrolyte has been synthesized as an ionic conductor in all-solid-state lithium-sulfur cells. Borophene has been synthesized from boron powder by the exfoliation method. As a cathodeactive material, MoS2, containing sulfur, and its 2D material nature, eliminates many of the disadvantages that sulfur exhibits when used alone. To investigate the effect of borophene on ionic conductivity in all-solid-state lithium-sulfur cells, multicomponent composite cathodes were prepared in (MoS2 / Conductive Carbon / Li7P3S11 + Borophene) overall compositions. According to the results, the specific capacity of the cells is affected negatively, while the stability of the cell is affected positively when increased the borophene amount.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

120N492

Teşekkür

This work is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under contract number 120N492. The authors thank the TUBITAK workers for their financial support.

Kaynakça

  • [1] 1. G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, and T. Wu, "Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries," Nature Energy, vol. 2, no. 7, pp. 1-10, 2017.
  • [2] 2. S. Gohari, M. R. Yaftian, M. Tokur, A. Kızılaslan, H. Shayani-Jam, H. Akbulut, and M. R. Sovizi, "Parametric optimization of sulfur@ graphene composites for aqueous and solid-state rechargeable lithium-sulfur batteries," Diamond and Related Materials, vol. 139, pp. 110267, 2023.
  • [3] 3. J. Zhou, P. Chen, W. Wang, X. Zhang, "Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications,"Chemical Engineering Journal, vol. 446, pp. 137041, 2022.
  • [4] 4. A. J. Mannix, X. F. Zhou, B. Kiraly, J. F. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, "Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs," Science, vol. 350, no.6267, pp. 1513-1516, 2015.
  • [5] 5. S. Guha, A. Kabiraj, S. Mahapatra, "Discovery of Clustered-P1 Borophene and Its Application as the Lightest High-Performance Transistor," ACS Applied Materials & Interfaces, vol. 15, no. 2, pp. 3182-3191, 2023.
  • [6] 6. R. Wu, H. Xu, Y. Zhao, C. Zha, J. Deng, C. Zhang, G. Lu, T. Qin, W. Wang, Y. Yin, C. Zhu, "Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries," Energy Storage Materials, vol. 32, pp. 216-224, 2020.
  • [7] 7. M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, "The emergence and evolution of borophene," Advanced Science, vol. 8, no. 12, pp. 2001801, 2021.
  • [8] 8. D. Ayodhya, G. Veerabhadram, "A brief review on synthesis, properties and lithium-ion battery applications of borophene," FlatChem, vol. 19, pp. 100150, 2020.
  • [9] 9. H. Lin, H. Shi, Z. Wang, Y. Mu, S. Li, J. Zhao, J. Guo, B. Yang, Z. S. Wu, F. Liu, "Scalable production of freestanding Few-layer β12-borophene single crystalline sheets as efficient electrocatalysts for lithium–sulfur batteries," ACS nano, vol. 15, no. 11, pp. 17327-17336, 2021.
  • [10] 10. M. I. Khan, S. Aslam, A. Majid, S. S. A. Gillani, "Intercalation of Lithium inside bilayer buckled borophene: a first principles prospective," Journal of The Electrochemical Society, vol. 168, no. 7, pp. 070535, 2021.
  • [11] 11. S. P. Grixti, "Borophene and Carbon Nitride Nanosheets for Energy Storage Applications" M.Sc. dissertation, Dept. of Mat. Sci. and Eng., University of Toronto, Toronto, ON, Canada, 2018.
  • [12] 12. Z. Huang, X. Qi, J. Zhong, editors "2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene," CRC Press, 2022.
  • [13] 13. H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, T. S. Zhao, "Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study," Journal of Materials Chemistry A, vol. 6, no. 5, pp. 2107-2114, 2018.
  • [14] 14. Ö. U. Kudu, T. Famprikis, B. Fleutot, M. D. Braida, T. Le Mercier, M. S. Islam, C. Masquelier, "A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S− P2S5 binary system," Journal of Power Sources, vol. 407, pp. 31-43, 2018.
  • [15] 15. Y. Zhao, Q. Zhuang, W. Li, H. Peng, G. Li, Z. Zhang, "Encapsulation of few-layer MoS2 in the pores of mesoporous carbon hollow spheres for lithium-sulfur batteries," Nanomaterials, vol. 9, no. 9, pp. 1247, 2019.
  • [16] 16. S. Gao, L. Yang, J. Shao, Q. Qu, Y. Wu, R. Holze, "Construction of hierarchical hollow MoS2/carbon microspheres for enhanced lithium storage performance," Journal of The Electrochemical Society, vol. 167, no. 10, pp. 100525, 2020.
  • [17] 17. L. Zhang, H. Wu, Y. Yan, X. Wang, X. Lou, "Hierarchical MoS₂ microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting," Energy & Environmental Science, vol. 7, no. 10, pp. 3302-3306, 2014.
  • [18] 18. L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O. G. Schmidt, "Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium‐ion batteries," Advanced materials, vol. 25, no. 8, pp. 1180-1184, 2013.
  • [19] 19. Z. He, W. Que, "Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction," Applied Materials Today, vol. 3, pp. 23-56, 2016.
  • [20] 20. Y. Guo, H. Guan, W. Peng, X. Li, Y. Ma, D. Song, H. Zhang, C. Li, L. Zhang, "Enhancing the electrochemical performances of Li7P3S11 electrolyte through P2O5 substitution for all-solid-state lithium battery," Solid State Ionics, vol. 358, p. 115506, 2020.
  • [21] 21. M. Tatsumisago, A. Hayashi, "Sulfide glass‐ceramic electrolytes for all‐solid‐state lithium and sodium batteries," International Journal of Applied Glass Science, vol. 5, no. 3, pp. 226-235, 2014.
  • [22] 22. Y. Seino, M. Nakagawa, M. Senga, H. Higuchi, K. Takada, T. Sasaki, "Analysis of the structure and degree of crystallisation of 70Li 2 S–30P 2 S 5 glass ceramic," Journal of Materials Chemistry A, vol. 3, no.6, pp. 2756-2761, 2015.
  • [23] 23. E. Osorio, J. K. Olson, W. Tiznado, A. I. Boldyrev, "Analysis of why boron avoids sp2 hybridization and classical structures in the BnHn+ 2 series," Chemistry–A European Journal, vol. 18, no. 31, pp. 9677-9681, 2012.
  • [24] 24. X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, S. A. Yang, "Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries," Nanoscale, vol. 8, no. 33, pp. 15340-15347, 2016.
  • [25] 25. B. Weng, X. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu, "Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application," Langmuir, vol. 31, no.14, pp. 4314-4322, 2015.
  • [26] 26. Y. Liu, C. Cui, Y. Liu, W. Liu, J. Wei, "Application of MoS 2 in the cathode of lithium sulfur batteries," RSC advances, vol. 10, no.13, pp. 7384-7395, 2020.
  • [27] 27. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, "Lithium ion battery applications of molybdenum disulfide (MoS 2) nanocomposites," Energy & Environmental Science, vol. 7, no.1, pp. 209-231, 2014.
  • [28] 28. Z. Liao, Q. Li, J. Zhang, J. Xu, B. Gao, P. K. Chu, K. Huo, "Oriented MoS2 Nanoflakes on N‐Doped Carbon Nanosheets Derived from Dodecylamine‐Intercalated MoO3 for High‐Performance Lithium‐Ion Battery Anodes," ChemElectroChem, vol. 5, no.10, pp. 1350-1356, 2018.
  • [29] 29. D. A. Aksyonov, V. A. Nikitina, "Charge transfer through interfaces in metal-ion intercalation systems," Comprehensive Inorganic Chemistry III, vol. 3, pp. 128-171, 2023.
  • [30] 30. Q. Ma, "Electrolyte Design for All-Solid-State Lithium Metal Batteries," M.Sc. dissertation, Dept. of Chem. Eng., University of Waterloo, Waterloo, ON, Canada, 2022.
Yıl 2023, Cilt: 27 Sayı: 6, 1379 - 1388, 18.12.2023
https://doi.org/10.16984/saufenbilder.1336352

Öz

Proje Numarası

120N492

Kaynakça

  • [1] 1. G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, and T. Wu, "Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries," Nature Energy, vol. 2, no. 7, pp. 1-10, 2017.
  • [2] 2. S. Gohari, M. R. Yaftian, M. Tokur, A. Kızılaslan, H. Shayani-Jam, H. Akbulut, and M. R. Sovizi, "Parametric optimization of sulfur@ graphene composites for aqueous and solid-state rechargeable lithium-sulfur batteries," Diamond and Related Materials, vol. 139, pp. 110267, 2023.
  • [3] 3. J. Zhou, P. Chen, W. Wang, X. Zhang, "Li7P3S11 electrolyte for all-solid-state lithium-ion batteries: structure, synthesis, and applications,"Chemical Engineering Journal, vol. 446, pp. 137041, 2022.
  • [4] 4. A. J. Mannix, X. F. Zhou, B. Kiraly, J. F. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, "Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs," Science, vol. 350, no.6267, pp. 1513-1516, 2015.
  • [5] 5. S. Guha, A. Kabiraj, S. Mahapatra, "Discovery of Clustered-P1 Borophene and Its Application as the Lightest High-Performance Transistor," ACS Applied Materials & Interfaces, vol. 15, no. 2, pp. 3182-3191, 2023.
  • [6] 6. R. Wu, H. Xu, Y. Zhao, C. Zha, J. Deng, C. Zhang, G. Lu, T. Qin, W. Wang, Y. Yin, C. Zhu, "Borophene-like boron subunits-inserted molybdenum framework of MoB2 enables stable and quick-acting Li2S6-based lithium-sulfur batteries," Energy Storage Materials, vol. 32, pp. 216-224, 2020.
  • [7] 7. M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, "The emergence and evolution of borophene," Advanced Science, vol. 8, no. 12, pp. 2001801, 2021.
  • [8] 8. D. Ayodhya, G. Veerabhadram, "A brief review on synthesis, properties and lithium-ion battery applications of borophene," FlatChem, vol. 19, pp. 100150, 2020.
  • [9] 9. H. Lin, H. Shi, Z. Wang, Y. Mu, S. Li, J. Zhao, J. Guo, B. Yang, Z. S. Wu, F. Liu, "Scalable production of freestanding Few-layer β12-borophene single crystalline sheets as efficient electrocatalysts for lithium–sulfur batteries," ACS nano, vol. 15, no. 11, pp. 17327-17336, 2021.
  • [10] 10. M. I. Khan, S. Aslam, A. Majid, S. S. A. Gillani, "Intercalation of Lithium inside bilayer buckled borophene: a first principles prospective," Journal of The Electrochemical Society, vol. 168, no. 7, pp. 070535, 2021.
  • [11] 11. S. P. Grixti, "Borophene and Carbon Nitride Nanosheets for Energy Storage Applications" M.Sc. dissertation, Dept. of Mat. Sci. and Eng., University of Toronto, Toronto, ON, Canada, 2018.
  • [12] 12. Z. Huang, X. Qi, J. Zhong, editors "2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene," CRC Press, 2022.
  • [13] 13. H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, T. S. Zhao, "Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study," Journal of Materials Chemistry A, vol. 6, no. 5, pp. 2107-2114, 2018.
  • [14] 14. Ö. U. Kudu, T. Famprikis, B. Fleutot, M. D. Braida, T. Le Mercier, M. S. Islam, C. Masquelier, "A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S− P2S5 binary system," Journal of Power Sources, vol. 407, pp. 31-43, 2018.
  • [15] 15. Y. Zhao, Q. Zhuang, W. Li, H. Peng, G. Li, Z. Zhang, "Encapsulation of few-layer MoS2 in the pores of mesoporous carbon hollow spheres for lithium-sulfur batteries," Nanomaterials, vol. 9, no. 9, pp. 1247, 2019.
  • [16] 16. S. Gao, L. Yang, J. Shao, Q. Qu, Y. Wu, R. Holze, "Construction of hierarchical hollow MoS2/carbon microspheres for enhanced lithium storage performance," Journal of The Electrochemical Society, vol. 167, no. 10, pp. 100525, 2020.
  • [17] 17. L. Zhang, H. Wu, Y. Yan, X. Wang, X. Lou, "Hierarchical MoS₂ microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting," Energy & Environmental Science, vol. 7, no. 10, pp. 3302-3306, 2014.
  • [18] 18. L. Yang, S. Wang, J. Mao, J. Deng, Q. Gao, Y. Tang, O. G. Schmidt, "Hierarchical MoS2/polyaniline nanowires with excellent electrochemical performance for lithium‐ion batteries," Advanced materials, vol. 25, no. 8, pp. 1180-1184, 2013.
  • [19] 19. Z. He, W. Que, "Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction," Applied Materials Today, vol. 3, pp. 23-56, 2016.
  • [20] 20. Y. Guo, H. Guan, W. Peng, X. Li, Y. Ma, D. Song, H. Zhang, C. Li, L. Zhang, "Enhancing the electrochemical performances of Li7P3S11 electrolyte through P2O5 substitution for all-solid-state lithium battery," Solid State Ionics, vol. 358, p. 115506, 2020.
  • [21] 21. M. Tatsumisago, A. Hayashi, "Sulfide glass‐ceramic electrolytes for all‐solid‐state lithium and sodium batteries," International Journal of Applied Glass Science, vol. 5, no. 3, pp. 226-235, 2014.
  • [22] 22. Y. Seino, M. Nakagawa, M. Senga, H. Higuchi, K. Takada, T. Sasaki, "Analysis of the structure and degree of crystallisation of 70Li 2 S–30P 2 S 5 glass ceramic," Journal of Materials Chemistry A, vol. 3, no.6, pp. 2756-2761, 2015.
  • [23] 23. E. Osorio, J. K. Olson, W. Tiznado, A. I. Boldyrev, "Analysis of why boron avoids sp2 hybridization and classical structures in the BnHn+ 2 series," Chemistry–A European Journal, vol. 18, no. 31, pp. 9677-9681, 2012.
  • [24] 24. X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, S. A. Yang, "Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries," Nanoscale, vol. 8, no. 33, pp. 15340-15347, 2016.
  • [25] 25. B. Weng, X. Zhang, N. Zhang, Z. R. Tang, Y. J. Xu, "Two-dimensional MoS2 nanosheet-coated Bi2S3 discoids: synthesis, formation mechanism, and photocatalytic application," Langmuir, vol. 31, no.14, pp. 4314-4322, 2015.
  • [26] 26. Y. Liu, C. Cui, Y. Liu, W. Liu, J. Wei, "Application of MoS 2 in the cathode of lithium sulfur batteries," RSC advances, vol. 10, no.13, pp. 7384-7395, 2020.
  • [27] 27. T. Stephenson, Z. Li, B. Olsen, D. Mitlin, "Lithium ion battery applications of molybdenum disulfide (MoS 2) nanocomposites," Energy & Environmental Science, vol. 7, no.1, pp. 209-231, 2014.
  • [28] 28. Z. Liao, Q. Li, J. Zhang, J. Xu, B. Gao, P. K. Chu, K. Huo, "Oriented MoS2 Nanoflakes on N‐Doped Carbon Nanosheets Derived from Dodecylamine‐Intercalated MoO3 for High‐Performance Lithium‐Ion Battery Anodes," ChemElectroChem, vol. 5, no.10, pp. 1350-1356, 2018.
  • [29] 29. D. A. Aksyonov, V. A. Nikitina, "Charge transfer through interfaces in metal-ion intercalation systems," Comprehensive Inorganic Chemistry III, vol. 3, pp. 128-171, 2023.
  • [30] 30. Q. Ma, "Electrolyte Design for All-Solid-State Lithium Metal Batteries," M.Sc. dissertation, Dept. of Chem. Eng., University of Waterloo, Waterloo, ON, Canada, 2022.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Çağrı Gökhan Türk 0000-0001-9940-6948

Mahmud Tokur 0000-0003-3612-5350

Proje Numarası 120N492
Erken Görünüm Tarihi 1 Aralık 2023
Yayımlanma Tarihi 18 Aralık 2023
Gönderilme Tarihi 1 Ağustos 2023
Kabul Tarihi 11 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 6

Kaynak Göster

APA Türk, Ç. G., & Tokur, M. (2023). Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries. Sakarya University Journal of Science, 27(6), 1379-1388. https://doi.org/10.16984/saufenbilder.1336352
AMA Türk ÇG, Tokur M. Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries. SAUJS. Aralık 2023;27(6):1379-1388. doi:10.16984/saufenbilder.1336352
Chicago Türk, Çağrı Gökhan, ve Mahmud Tokur. “Effect of Borophene on the Electrochemical Performances of Li7P3S11 Based AllSolid-State Lithium Sulfur Batteries”. Sakarya University Journal of Science 27, sy. 6 (Aralık 2023): 1379-88. https://doi.org/10.16984/saufenbilder.1336352.
EndNote Türk ÇG, Tokur M (01 Aralık 2023) Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries. Sakarya University Journal of Science 27 6 1379–1388.
IEEE Ç. G. Türk ve M. Tokur, “Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries”, SAUJS, c. 27, sy. 6, ss. 1379–1388, 2023, doi: 10.16984/saufenbilder.1336352.
ISNAD Türk, Çağrı Gökhan - Tokur, Mahmud. “Effect of Borophene on the Electrochemical Performances of Li7P3S11 Based AllSolid-State Lithium Sulfur Batteries”. Sakarya University Journal of Science 27/6 (Aralık 2023), 1379-1388. https://doi.org/10.16984/saufenbilder.1336352.
JAMA Türk ÇG, Tokur M. Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries. SAUJS. 2023;27:1379–1388.
MLA Türk, Çağrı Gökhan ve Mahmud Tokur. “Effect of Borophene on the Electrochemical Performances of Li7P3S11 Based AllSolid-State Lithium Sulfur Batteries”. Sakarya University Journal of Science, c. 27, sy. 6, 2023, ss. 1379-88, doi:10.16984/saufenbilder.1336352.
Vancouver Türk ÇG, Tokur M. Effect of Borophene on the Electrochemical Performances of Li7P3S11 based AllSolid-State Lithium Sulfur Batteries. SAUJS. 2023;27(6):1379-88.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.