Research Article
BibTex RIS Cite

Year 2025, Volume: 29 Issue: 4, 363 - 382, 31.08.2025
https://doi.org/10.16984/saufenbilder.1681034

Abstract

References

  • D. Coppola, C. Lauritano, F. Palma Esposito, G. Riccio, C. Rizzo, D. de Pascale, “Fish waste: From Problem to valuable resource,” Marine Drugs, vol. 19, no. 2, 2021.
  • R. Cooney, DB de Sousa, A. Fernandez-Rios, S. Mellett, N. Rowan, AP Morse, M Hayes, J. Laso, E. Clifford, “A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive production and sustainability,” Journal of Cleaner Production, vol. 392, p. 136283, 2023.
  • T. Safronova, V. Vorobyov, N. Kildeeva, T. Shatalova, O. Toshev, Y. Filippov, A. Dmitrienko, O. Gavlina, O. Chernega, E. Nizhnikova, “Inorganic powders prepared from fish scales,” Ceramics Switzerland, vol. 5, no. 3, pp. 484–498, 2022.
  • S. V Dorozhkin, Calcium orthophosphates: Applications in nature, biology, and medicine, first ed., Jenny Stanford Publishing, New York, 2012.
  • S. V Dorozhkin, “Calcium orthophosphates and human beings: A historical perspective from the 1770s until 1940,” Biomatter, vol. 2, no. 2, pp. 53–70, 2012.
  • S. V Dorozhkin, “Calcium orthophosphates (CaPO4): Occurrence and properties,” Progress in Biomaterials, vol. 5, no. 1, pp. 9–70, 2016.
  • S. Weiner, H. D. Wagner, “The material bone: Structure-mechanical function relations,” Annual Review of Materials Research, vol. 28, pp. 271–298, 1998.
  • P. W. Brown, B. Constantz, Hydroxyapatite and related materials, first ed., CRC press, Florida, 1994.
  • W. Suchanek, M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants,” Journal of Materials Research, vol. 13, no. 1, pp. 94–117, 1998.
  • R. Murugan, S. Ramakrishna, “Development of nanocomposites for bone grafting,” Composite Science Technology, vol. 65, no. 15, pp. 2385–2406, 2005.
  • N. Eliaz, N. Metoki, “Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications,” Materials (Basel, Switzerland), vol. 10, no. 4, 2017.
  • J. Jeong, J. H. Kim, J. H. Shim, N. S. Hwang, C. Y. Heo, “Bioactive calcium phosphate materials and applications in bone regeneration,” Biomaterials Research, vol. 23, no. 1, 2019.
  • K. Sato, “Mechanism of hydroxyapatite mineralization in biological systems,” Journal of the Ceramic Society of Japan, vol. 115, no. 1338, pp. 124–130, 2007.
  • T. Kokubo, Bioceramics and their clinical applications, first ed., Woodhead Publishing, 2008.
  • K. Allam, A. El Bouari, B. Belhorma, L. Bih, “Removal of methylene blue from water using hydroxyapatite submitted to microwave irradiation,” Journal of Water Resource and Protection, vol. 8, no. 3, pp. 358–371, 2016.
  • R. Verma, S. R. Mishra, V. Gadore, M. Ahmaruzzaman, “Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications,” Advance Colloid Interface Science, vol. 315, p. 102890, 2023.
  • H. E. Okur, “Rietveld refinement-based structural analysis of biogenic hydroxyapatite and its PVA composite for dye removal,” Materials Today Communucations, vol. 43, p. 111723, 2025.
  • A. S. Posner, A. Perloff, A. F. Diorio, “Refinement of the hydroxyapatite structure,” Acta Crystallography, vol. 11, no. 4, pp. 308–309, 1958.
  • J. C. Elliott, P. E. Mackie, R. A. Young, “Monoclinic hydroxyapatite,” Science, vol. 180, no. 4090, pp. 1055–1057, 1973.
  • P. W. Brown, R. I. Martin, “An Analysis of Hydroxyapatite Surface Layer Formation,” The Journal of Physical Chemistry B, vol. 103, no. 10, pp. 1671–1675, 1999.
  • S. V Dorozhkin, M. Epple, “Biological and medical significance of calcium phosphates,” Angewandte Chemie nternational ed. in English, vol. 41, no. 17, pp. 3130–3146, 002.
  • S.-C. Liou, S.-Y. Chen, H.-Y. Lee, J.-S. Bow, “Structural characterization of nano-sized calcium deficient apatite powders,” Biomaterials, vol. 25, no. 2, pp. 189–196, 2004.
  • Y. Sekine, Y Sekine, R. Motokawa, N. Kozai, T. Ohnuki, D. Matsumura, T. Tsuji, R. Kawasaki, K. Akiyoshi, “Calcium-deficient hydroxyapatite as a potential sorbent for strontium,” Scientific Reports, vol. 7, no. 1, p. 2064, 2017.
  • M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomaterials, vol. 9, no. 8, pp. 7591–7621, 2013.
  • P. O. Etinosa, O. A. Osuchukwu, EO Anisiji, M. Y Lawal, SA Mohammed, I. O Isaac, P. G. Oni, “In-depth review of synthesis of hydroxyapatite biomaterials from natural resources and chemical regents for biomedical applications,” Arabian Journal of Chemistry, vol. 17, no. 12, 2024.
  • S. M. Londoño-Restrepo, C. F. Ramirez-Gutierrez, A. del Real, E. Rubio-Rosas, M. E. Rodriguez-García, “Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air,” Journal of Materials Science, vol. 51, no. 9, pp. 4431–4441, 2016.
  • S. M. Londono-Restrepo, R. Jeronimo-Cruz, E. Rubio-Rosas, M. E. Rodriguez-Garcia, “The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone,” Journal od Materials Science-Materials in Medicine, vol. 29, no. 5, May 2018.
  • S. M. Londoño-Restrepo, R. Jeronimo-Cruz, B. M. Millán-Malo, E. M. Rivera-Muñoz, M. E. Rodriguez-García, “Effect of the nano crystal size on the x-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones,” Scientific Reports, vol. 9, no. 1, p. 5915, 2019.
  • N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, T. C. Lee, “Syntheses of hydroxyapatite from natural sources,” Heliyon, vol. 5, no. 5, p. e01588, 2019.
  • P. A. Forero-Sossa, I. U. Olvera-Alvarez, J. D. Salazar-Martinez, D. G. Espinosa-Arbelaez, B. Segura-Giraldo, A. L. Giraldo-Betancur, “Biogenic hydroxyapatite powders: Effects of source and processing methodologies on physicochemical properties and bioactive response,” Materials Characterization, vol. 173, Mar. 2021.
  • P. Arokiasamy, M. M. A. B. Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil, M. Nabiałek, “Synthesis methods of hydroxyapatite from natural sources: A review,” Ceramics International, vol. 48, no. 11, pp. 14959–14979, 2022.
  • A. Kurzyk, A. Szwed-Georgiou, J. Pagacz, A. Antosik, P. Tymowicz-Grzyb, A. Gerle, P. Szterner, “Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications.,” Scientific Reports, vol. 13, no. 1, p. 15384, Sep. 2023.
  • H. E. Okur, “Air-exposure-driven color and optical variations in hydroxyapatite extracted from fish scales,” Sakarya University Journal of Science, vol. 29, no. 1, pp. 125–139, 2025.
  • Y. Harada, O.; Hasegawa, “Extraction method and extraction apparatus of collagen, production method and production apparatus of hydroxyapatite, and collagen-containing aqueous extract and hydroxyapatite,” Patent JP No. JP2008285456A, 27 November 2008.
  • X. Li, L. Yang, Y. Yao, T. Lin, Y. Chen, L. Xue, “Comprehensive extraction method of collagen, hydroxyapatite and protein in fish scales,” Patent CN No. 107056933, 18 August 2017.
  • F. Liu, Y. Ji, S. Zhang, L. Yang, “Method for extracting hydroxyapatite and collagen from fish scales by using deep eutectic solvent,” Patent CN No. 111302319, 19 June 2020.
  • Z. Zhang, Y. Tu, D. Dai, “Method for Extracting Fish Scale Collagen Protein Peptide Powder and Hydroxyapatite,” Patent CN No. 108949882, 7 December 2018.
  • S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien, S. Chanthai, “Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution,” Chemical Engineering Journal, vol. 215–216, pp. 522–532, 2013.
  • W. Pon-On, P. Suntornsaratoon, N. Charoenphandhu, J. Thongbunchoo, N. Krishnamra, I. M. Tang, “Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material,” Materials Science and Engineering: C, vol. 62, pp. 183–189, 2016.
  • A. T. Idowu, S. Benjakul, S. Sinthusamran, T. Sae-leaw, N. Suzuki, Y Kitani, P. Sookchoo, “Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from salmon bone,” Applied Sciences, vol. 10, no. 12, 2020.
  • S. Mondal, S. Mahata, S. Kundu, B. Mondal, “Processing of natural resourced hydroxyapatite ceramics from fish scale,” Advances in Applied Ceramics, vol. 109, no. 4, pp. 234–239, Apr. 2010.
  • I. Zainol, N. M. Alwi, M. Z. Abidin, H. M. Z. Haniza, M. S. Ahmad, A. Ramli, “Physicochemical properties of hydroxyapatite extracted from fish scales,” in Advancement of Materials and Nanotechnology II, in Advanced Materials Research, vol. 545. Trans Tech Publications Ltd, 2012, pp. 235–239.
  • N. H. Abdullah, “Preparation and characterization of calcium hydroxyphosphate (hydroxyapatite) from tilapia fish bones and scales via calcination method,” in Development and Investigation of Materials Using Modern Techniques II, in Materials Science Forum, vol. 1010, Trans Tech Publications Ltd, 2020, pp. 596–601.
  • T. Eknapakul, S. Kuimalee, W. Sailuam, S. Daengsakul, N. Tanapongpisit, P. Laohana, W. Saenrang, A. Bootchanont, A. Khamkongkaeo, R. Yimnirun, “Impacts of pre-treatment methods on the morphology, crystal structure, and defects formation of hydroxyapatite extracted from Nile tilapia scales,” Royal Society of Chemistry Advances, vol. 14, no. 7, pp. 4614–4622, 2024.
  • M. Ozawa, S. Suzuki, “Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment,” Journal of American Ceramic Society, vol. 85, no. 5, pp. 1315–1317, 2002.
  • H. E. Okur, R. H. Colman, Y. Takabayashi, P. Jeglič, Y. Ohishi, K. Kato, D. Arčon, Y Kubota, K. Prassides, “Fulleride superconductivity tuned by elastic strain due to cation compositional disorder,” Cheical Sciences, vol. 15, no. 40, pp. 16485–16493, 2024.
  • C. F. Ramirez-Gutierrez, S. M. Londoño-Restrepo, A. del Real, M. A. Mondragón, M. E. Rodriguez-García, “Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone,” Ceramics International, vol. 43, no. 10, pp. 7552–7559, 2017.
  • A. C. Larson and R. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National. Laboratory LAUR, pp. 86–748, 2004.
  • P. Thompson, D. E. Cox, J. B. Hastings, “Rietveld refinement of debye-scherrer synchrotron X-ray data from A1203,” Journal of Applied Crystallography, vol. 20, no. 2, pp. 79–83, 1987.
  • C. J. Howard, “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” Journal of Applied Crystallography, vol. 15, no. 6, pp. 615–620, 1982.
  • J. Laugier, B. Bochu, “LMGP-Suite of Programs for the interpretation of X-ray Experiments,” 1999, ENSP/Laboratoire des Matériaux et du Génie Physique.
  • K. Sudarsanan, R. A. Young, “Significant precision in crystal structural details. Holly Springs hydroxyapatite,” Acta Crystallographica Section B, vol. 25, no. 8, pp. 1534–1543, 1969.
  • E. Hosseinzadeh, M. Davarpanah, N. H. Nemati, S. A. Tavakoli, “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method,” International Journal of Organ Transplantation Medicine, vol. 5, no. 1, pp. 23–31, 2014.
  • R. X. Sun, Y. Lv, Y. R. Niu, X. H. Zhao, D. S. Cao, J. Tang, J., K. Z. Chen, “Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders,” Ceramics International, vol. 43, no. 18, pp. 16792–16798, 2017.
  • G. Aydin, P. Terzioğlu, H. Öğüt, A. Kalemtas, “Production, characterization, and cytotoxicity of calcium phosphate ceramics derived from the bone of meagre fish, Argyrosomus regius,” Journal of the Australian Ceramic Society, vol. 57, no. 1, pp. 37–46, 2021.
  • R. M. Wilson, J. C. Elliott, S. E. P. Dowker, “Rietveld refinement of the crystallographic structure of human dental enamel apatites,” American Mineralogist, vol. 84, no. 9, pp. 1406–1414, 1999.
  • J. M. Stutman, J. D. Termine, A. S. Posner, “Vibrational spectra and structure of the phosphate ion in some calcium phosphates,” Transactions of the New York Academy of Sciences, vol. 27, no. 6 Series II, pp. 669–675, 1965.
  • D. W. Holcomb, R. A. Young, “Thermal decomposition of human tooth enamel.,” Calcified Tissue International, vol. 31, no. 3, pp. 189–201, 1980.
  • M. E. Fleet, X. Liu, “Coupled substitution of type A and B carbonate in sodium-bearing apatite,” Biomaterials, vol. 28, no. 6, pp. 916–926, 2007.
  • J. C. Elliott, “Structure, crystal chemistry and density of enamel apatites,” in Ciba Foundation Symposium 205 ‐ Dental Enamel, John Wiley & Sons Ltd, pp. 54–72.
  • N. Patel, I. R. Gibson, S. Ke, S. M. Best, W. Bonfield, “Calcining influence on the powder properties of hydroxyapatite,” Journal of materials science. Materials in medicine, vol. 12, no. 2, pp. 181–188, 2001.
  • S. Ramesh, C. J. Gan, L. T. Bang, A .Niakan, C. Y. Tan, J. Purbolaksono, H. Chandran, B. K Yap, W.D. Teng, “Effects of two-step sintering on the properties of hydroxyapatite bioceramic,” Journal of Ceramic Processing Research, vol. 16, no. 6, pp. 683–689, 2015.
  • H. Y. Juang, M. H. Hon, “Effect of calcination on sintering of hydroxyapatite,” Biomaterials, vol. 17, no. 21, pp. 2059–2064, 1996.
  • D. F. Cañon-Davila, A. M. Castillo-Paz, S. M. Londoño-Restrepo, H. Pfeiffer, R. Ramirez-Bon, and M. E. Rodriguez-Garcia, “Study of the coalescence phenomena in biogenic nano-hydroxyapatite produced by controlled calcination processes at low temperature,” Ceramics International, vol. 49, no. 11, Part A, pp. 17524–17533, 2023.
  • P. A. Forero-Sossa, J. D. Salazar-Martínez, A. L. Giraldo-Betancur, B. Segura-Giraldo, E. Restrepo-Parra, “Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones,” Scientific Reports, vol. 11, no. 1, p. 11069, 2021.
  • M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, H. Figueiredo, “Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone,” Ceramics International, vol. 36, no. 8, pp. 2383–2393, 2010.

Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding

Year 2025, Volume: 29 Issue: 4, 363 - 382, 31.08.2025
https://doi.org/10.16984/saufenbilder.1681034

Abstract

Hydroxyapatite (HAp) derived from biogenic sources offers a sustainable and cost-effective alternative to synthetic materials, yet controlling its crystal structure and morphology remains a key challenge. In this study, polycrystalline HAp is extracted from alkali-treated fish scales and subjected to a carefully designed solid-state crystallization protocol involving successive annealing at 320 °C, 500 °C, 600 °C, 700 °C, and 800 °C, with intermediate manual grinding steps. This multi-step thermal approach addresses the limitations of conventional one-step calcination and enables controlled structural evolution. X-ray powder diffraction analyzed via Rietveld refinement reveals a progressive enhancement in crystallinity and phase purity with increasing temperature, with no detectable secondary phases. Well-defined hexagonal facets emerge at 800 °C, indicating advanced structural ordering. Scanning electron microscopy shows a transition from loosely aggregated, irregular clusters to uniform, faceted grains. Fourier-transform infrared spectroscopy confirms the presence of phosphate, hydroxyl, and trace carbonate groups, with carbonate bands decreasing at higher temperatures. Semi-quantitative energy-dispersive X-ray spectroscopy supports carbonate incorporation and suggests trace localized magnesium, without clear evidence of significant elemental substitution. Compared to direct calcination, successive annealing improves thermal regulation, minimizes agglomeration, and preserves nanostructural integrity—features essential for biomedical and catalytic applications. The combined use of alkali pre-treatment, stepwise annealing, and intermediate grinding results in a tunable, solid-state route for tailoring the crystal structure and morphology of biogenic HAp. This optimized method enables the synthesis of phase-pure HAp at moderate temperatures and presents a scalable pathway for advanced applications in bioceramics, environmental remediation, and sustainable materials engineering.

References

  • D. Coppola, C. Lauritano, F. Palma Esposito, G. Riccio, C. Rizzo, D. de Pascale, “Fish waste: From Problem to valuable resource,” Marine Drugs, vol. 19, no. 2, 2021.
  • R. Cooney, DB de Sousa, A. Fernandez-Rios, S. Mellett, N. Rowan, AP Morse, M Hayes, J. Laso, E. Clifford, “A circular economy framework for seafood waste valorisation to meet challenges and opportunities for intensive production and sustainability,” Journal of Cleaner Production, vol. 392, p. 136283, 2023.
  • T. Safronova, V. Vorobyov, N. Kildeeva, T. Shatalova, O. Toshev, Y. Filippov, A. Dmitrienko, O. Gavlina, O. Chernega, E. Nizhnikova, “Inorganic powders prepared from fish scales,” Ceramics Switzerland, vol. 5, no. 3, pp. 484–498, 2022.
  • S. V Dorozhkin, Calcium orthophosphates: Applications in nature, biology, and medicine, first ed., Jenny Stanford Publishing, New York, 2012.
  • S. V Dorozhkin, “Calcium orthophosphates and human beings: A historical perspective from the 1770s until 1940,” Biomatter, vol. 2, no. 2, pp. 53–70, 2012.
  • S. V Dorozhkin, “Calcium orthophosphates (CaPO4): Occurrence and properties,” Progress in Biomaterials, vol. 5, no. 1, pp. 9–70, 2016.
  • S. Weiner, H. D. Wagner, “The material bone: Structure-mechanical function relations,” Annual Review of Materials Research, vol. 28, pp. 271–298, 1998.
  • P. W. Brown, B. Constantz, Hydroxyapatite and related materials, first ed., CRC press, Florida, 1994.
  • W. Suchanek, M. Yoshimura, “Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants,” Journal of Materials Research, vol. 13, no. 1, pp. 94–117, 1998.
  • R. Murugan, S. Ramakrishna, “Development of nanocomposites for bone grafting,” Composite Science Technology, vol. 65, no. 15, pp. 2385–2406, 2005.
  • N. Eliaz, N. Metoki, “Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications,” Materials (Basel, Switzerland), vol. 10, no. 4, 2017.
  • J. Jeong, J. H. Kim, J. H. Shim, N. S. Hwang, C. Y. Heo, “Bioactive calcium phosphate materials and applications in bone regeneration,” Biomaterials Research, vol. 23, no. 1, 2019.
  • K. Sato, “Mechanism of hydroxyapatite mineralization in biological systems,” Journal of the Ceramic Society of Japan, vol. 115, no. 1338, pp. 124–130, 2007.
  • T. Kokubo, Bioceramics and their clinical applications, first ed., Woodhead Publishing, 2008.
  • K. Allam, A. El Bouari, B. Belhorma, L. Bih, “Removal of methylene blue from water using hydroxyapatite submitted to microwave irradiation,” Journal of Water Resource and Protection, vol. 8, no. 3, pp. 358–371, 2016.
  • R. Verma, S. R. Mishra, V. Gadore, M. Ahmaruzzaman, “Hydroxyapatite-based composites: Excellent materials for environmental remediation and biomedical applications,” Advance Colloid Interface Science, vol. 315, p. 102890, 2023.
  • H. E. Okur, “Rietveld refinement-based structural analysis of biogenic hydroxyapatite and its PVA composite for dye removal,” Materials Today Communucations, vol. 43, p. 111723, 2025.
  • A. S. Posner, A. Perloff, A. F. Diorio, “Refinement of the hydroxyapatite structure,” Acta Crystallography, vol. 11, no. 4, pp. 308–309, 1958.
  • J. C. Elliott, P. E. Mackie, R. A. Young, “Monoclinic hydroxyapatite,” Science, vol. 180, no. 4090, pp. 1055–1057, 1973.
  • P. W. Brown, R. I. Martin, “An Analysis of Hydroxyapatite Surface Layer Formation,” The Journal of Physical Chemistry B, vol. 103, no. 10, pp. 1671–1675, 1999.
  • S. V Dorozhkin, M. Epple, “Biological and medical significance of calcium phosphates,” Angewandte Chemie nternational ed. in English, vol. 41, no. 17, pp. 3130–3146, 002.
  • S.-C. Liou, S.-Y. Chen, H.-Y. Lee, J.-S. Bow, “Structural characterization of nano-sized calcium deficient apatite powders,” Biomaterials, vol. 25, no. 2, pp. 189–196, 2004.
  • Y. Sekine, Y Sekine, R. Motokawa, N. Kozai, T. Ohnuki, D. Matsumura, T. Tsuji, R. Kawasaki, K. Akiyoshi, “Calcium-deficient hydroxyapatite as a potential sorbent for strontium,” Scientific Reports, vol. 7, no. 1, p. 2064, 2017.
  • M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomaterials, vol. 9, no. 8, pp. 7591–7621, 2013.
  • P. O. Etinosa, O. A. Osuchukwu, EO Anisiji, M. Y Lawal, SA Mohammed, I. O Isaac, P. G. Oni, “In-depth review of synthesis of hydroxyapatite biomaterials from natural resources and chemical regents for biomedical applications,” Arabian Journal of Chemistry, vol. 17, no. 12, 2024.
  • S. M. Londoño-Restrepo, C. F. Ramirez-Gutierrez, A. del Real, E. Rubio-Rosas, M. E. Rodriguez-García, “Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air,” Journal of Materials Science, vol. 51, no. 9, pp. 4431–4441, 2016.
  • S. M. Londono-Restrepo, R. Jeronimo-Cruz, E. Rubio-Rosas, M. E. Rodriguez-Garcia, “The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone,” Journal od Materials Science-Materials in Medicine, vol. 29, no. 5, May 2018.
  • S. M. Londoño-Restrepo, R. Jeronimo-Cruz, B. M. Millán-Malo, E. M. Rivera-Muñoz, M. E. Rodriguez-García, “Effect of the nano crystal size on the x-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones,” Scientific Reports, vol. 9, no. 1, p. 5915, 2019.
  • N. A. S. Mohd Pu’ad, P. Koshy, H. Z. Abdullah, M. I. Idris, T. C. Lee, “Syntheses of hydroxyapatite from natural sources,” Heliyon, vol. 5, no. 5, p. e01588, 2019.
  • P. A. Forero-Sossa, I. U. Olvera-Alvarez, J. D. Salazar-Martinez, D. G. Espinosa-Arbelaez, B. Segura-Giraldo, A. L. Giraldo-Betancur, “Biogenic hydroxyapatite powders: Effects of source and processing methodologies on physicochemical properties and bioactive response,” Materials Characterization, vol. 173, Mar. 2021.
  • P. Arokiasamy, M. M. A. B. Abdullah, S. Z. Abd Rahim, S. Luhar, A. V. Sandu, N. H. Jamil, M. Nabiałek, “Synthesis methods of hydroxyapatite from natural sources: A review,” Ceramics International, vol. 48, no. 11, pp. 14959–14979, 2022.
  • A. Kurzyk, A. Szwed-Georgiou, J. Pagacz, A. Antosik, P. Tymowicz-Grzyb, A. Gerle, P. Szterner, “Calcination and ion substitution improve physicochemical and biological properties of nanohydroxyapatite for bone tissue engineering applications.,” Scientific Reports, vol. 13, no. 1, p. 15384, Sep. 2023.
  • H. E. Okur, “Air-exposure-driven color and optical variations in hydroxyapatite extracted from fish scales,” Sakarya University Journal of Science, vol. 29, no. 1, pp. 125–139, 2025.
  • Y. Harada, O.; Hasegawa, “Extraction method and extraction apparatus of collagen, production method and production apparatus of hydroxyapatite, and collagen-containing aqueous extract and hydroxyapatite,” Patent JP No. JP2008285456A, 27 November 2008.
  • X. Li, L. Yang, Y. Yao, T. Lin, Y. Chen, L. Xue, “Comprehensive extraction method of collagen, hydroxyapatite and protein in fish scales,” Patent CN No. 107056933, 18 August 2017.
  • F. Liu, Y. Ji, S. Zhang, L. Yang, “Method for extracting hydroxyapatite and collagen from fish scales by using deep eutectic solvent,” Patent CN No. 111302319, 19 June 2020.
  • Z. Zhang, Y. Tu, D. Dai, “Method for Extracting Fish Scale Collagen Protein Peptide Powder and Hydroxyapatite,” Patent CN No. 108949882, 7 December 2018.
  • S. Kongsri, K. Janpradit, K. Buapa, S. Techawongstien, S. Chanthai, “Nanocrystalline hydroxyapatite from fish scale waste: Preparation, characterization and application for selenium adsorption in aqueous solution,” Chemical Engineering Journal, vol. 215–216, pp. 522–532, 2013.
  • W. Pon-On, P. Suntornsaratoon, N. Charoenphandhu, J. Thongbunchoo, N. Krishnamra, I. M. Tang, “Hydroxyapatite from fish scale for potential use as bone scaffold or regenerative material,” Materials Science and Engineering: C, vol. 62, pp. 183–189, 2016.
  • A. T. Idowu, S. Benjakul, S. Sinthusamran, T. Sae-leaw, N. Suzuki, Y Kitani, P. Sookchoo, “Effect of alkaline treatment on characteristics of bio-calcium and hydroxyapatite powders derived from salmon bone,” Applied Sciences, vol. 10, no. 12, 2020.
  • S. Mondal, S. Mahata, S. Kundu, B. Mondal, “Processing of natural resourced hydroxyapatite ceramics from fish scale,” Advances in Applied Ceramics, vol. 109, no. 4, pp. 234–239, Apr. 2010.
  • I. Zainol, N. M. Alwi, M. Z. Abidin, H. M. Z. Haniza, M. S. Ahmad, A. Ramli, “Physicochemical properties of hydroxyapatite extracted from fish scales,” in Advancement of Materials and Nanotechnology II, in Advanced Materials Research, vol. 545. Trans Tech Publications Ltd, 2012, pp. 235–239.
  • N. H. Abdullah, “Preparation and characterization of calcium hydroxyphosphate (hydroxyapatite) from tilapia fish bones and scales via calcination method,” in Development and Investigation of Materials Using Modern Techniques II, in Materials Science Forum, vol. 1010, Trans Tech Publications Ltd, 2020, pp. 596–601.
  • T. Eknapakul, S. Kuimalee, W. Sailuam, S. Daengsakul, N. Tanapongpisit, P. Laohana, W. Saenrang, A. Bootchanont, A. Khamkongkaeo, R. Yimnirun, “Impacts of pre-treatment methods on the morphology, crystal structure, and defects formation of hydroxyapatite extracted from Nile tilapia scales,” Royal Society of Chemistry Advances, vol. 14, no. 7, pp. 4614–4622, 2024.
  • M. Ozawa, S. Suzuki, “Microstructural development of natural hydroxyapatite originated from fish-bone waste through heat treatment,” Journal of American Ceramic Society, vol. 85, no. 5, pp. 1315–1317, 2002.
  • H. E. Okur, R. H. Colman, Y. Takabayashi, P. Jeglič, Y. Ohishi, K. Kato, D. Arčon, Y Kubota, K. Prassides, “Fulleride superconductivity tuned by elastic strain due to cation compositional disorder,” Cheical Sciences, vol. 15, no. 40, pp. 16485–16493, 2024.
  • C. F. Ramirez-Gutierrez, S. M. Londoño-Restrepo, A. del Real, M. A. Mondragón, M. E. Rodriguez-García, “Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone,” Ceramics International, vol. 43, no. 10, pp. 7552–7559, 2017.
  • A. C. Larson and R. Von Dreele, “General Structure Analysis System (GSAS),” Los Alamos National. Laboratory LAUR, pp. 86–748, 2004.
  • P. Thompson, D. E. Cox, J. B. Hastings, “Rietveld refinement of debye-scherrer synchrotron X-ray data from A1203,” Journal of Applied Crystallography, vol. 20, no. 2, pp. 79–83, 1987.
  • C. J. Howard, “The approximation of asymmetric neutron powder diffraction peaks by sums of Gaussians,” Journal of Applied Crystallography, vol. 15, no. 6, pp. 615–620, 1982.
  • J. Laugier, B. Bochu, “LMGP-Suite of Programs for the interpretation of X-ray Experiments,” 1999, ENSP/Laboratoire des Matériaux et du Génie Physique.
  • K. Sudarsanan, R. A. Young, “Significant precision in crystal structural details. Holly Springs hydroxyapatite,” Acta Crystallographica Section B, vol. 25, no. 8, pp. 1534–1543, 1969.
  • E. Hosseinzadeh, M. Davarpanah, N. H. Nemati, S. A. Tavakoli, “Fabrication of a hard tissue replacement using natural hydroxyapatite derived from bovine bones by thermal decomposition method,” International Journal of Organ Transplantation Medicine, vol. 5, no. 1, pp. 23–31, 2014.
  • R. X. Sun, Y. Lv, Y. R. Niu, X. H. Zhao, D. S. Cao, J. Tang, J., K. Z. Chen, “Physicochemical and biological properties of bovine-derived porous hydroxyapatite/collagen composite and its hydroxyapatite powders,” Ceramics International, vol. 43, no. 18, pp. 16792–16798, 2017.
  • G. Aydin, P. Terzioğlu, H. Öğüt, A. Kalemtas, “Production, characterization, and cytotoxicity of calcium phosphate ceramics derived from the bone of meagre fish, Argyrosomus regius,” Journal of the Australian Ceramic Society, vol. 57, no. 1, pp. 37–46, 2021.
  • R. M. Wilson, J. C. Elliott, S. E. P. Dowker, “Rietveld refinement of the crystallographic structure of human dental enamel apatites,” American Mineralogist, vol. 84, no. 9, pp. 1406–1414, 1999.
  • J. M. Stutman, J. D. Termine, A. S. Posner, “Vibrational spectra and structure of the phosphate ion in some calcium phosphates,” Transactions of the New York Academy of Sciences, vol. 27, no. 6 Series II, pp. 669–675, 1965.
  • D. W. Holcomb, R. A. Young, “Thermal decomposition of human tooth enamel.,” Calcified Tissue International, vol. 31, no. 3, pp. 189–201, 1980.
  • M. E. Fleet, X. Liu, “Coupled substitution of type A and B carbonate in sodium-bearing apatite,” Biomaterials, vol. 28, no. 6, pp. 916–926, 2007.
  • J. C. Elliott, “Structure, crystal chemistry and density of enamel apatites,” in Ciba Foundation Symposium 205 ‐ Dental Enamel, John Wiley & Sons Ltd, pp. 54–72.
  • N. Patel, I. R. Gibson, S. Ke, S. M. Best, W. Bonfield, “Calcining influence on the powder properties of hydroxyapatite,” Journal of materials science. Materials in medicine, vol. 12, no. 2, pp. 181–188, 2001.
  • S. Ramesh, C. J. Gan, L. T. Bang, A .Niakan, C. Y. Tan, J. Purbolaksono, H. Chandran, B. K Yap, W.D. Teng, “Effects of two-step sintering on the properties of hydroxyapatite bioceramic,” Journal of Ceramic Processing Research, vol. 16, no. 6, pp. 683–689, 2015.
  • H. Y. Juang, M. H. Hon, “Effect of calcination on sintering of hydroxyapatite,” Biomaterials, vol. 17, no. 21, pp. 2059–2064, 1996.
  • D. F. Cañon-Davila, A. M. Castillo-Paz, S. M. Londoño-Restrepo, H. Pfeiffer, R. Ramirez-Bon, and M. E. Rodriguez-Garcia, “Study of the coalescence phenomena in biogenic nano-hydroxyapatite produced by controlled calcination processes at low temperature,” Ceramics International, vol. 49, no. 11, Part A, pp. 17524–17533, 2023.
  • P. A. Forero-Sossa, J. D. Salazar-Martínez, A. L. Giraldo-Betancur, B. Segura-Giraldo, E. Restrepo-Parra, “Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones,” Scientific Reports, vol. 11, no. 1, p. 11069, 2021.
  • M. Figueiredo, A. Fernando, G. Martins, J. Freitas, F. Judas, H. Figueiredo, “Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone,” Ceramics International, vol. 36, no. 8, pp. 2383–2393, 2010.
There are 66 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Research Articles
Authors

H. Esma Okur 0000-0003-3439-0716

Early Pub Date August 11, 2025
Publication Date August 31, 2025
Submission Date April 21, 2025
Acceptance Date July 21, 2025
Published in Issue Year 2025 Volume: 29 Issue: 4

Cite

APA Okur, H. E. (2025). Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding. Sakarya University Journal of Science, 29(4), 363-382. https://doi.org/10.16984/saufenbilder.1681034
AMA Okur HE. Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding. SAUJS. August 2025;29(4):363-382. doi:10.16984/saufenbilder.1681034
Chicago Okur, H. Esma. “Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding”. Sakarya University Journal of Science 29, no. 4 (August 2025): 363-82. https://doi.org/10.16984/saufenbilder.1681034.
EndNote Okur HE (August 1, 2025) Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding. Sakarya University Journal of Science 29 4 363–382.
IEEE H. E. Okur, “Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding”, SAUJS, vol. 29, no. 4, pp. 363–382, 2025, doi: 10.16984/saufenbilder.1681034.
ISNAD Okur, H. Esma. “Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding”. Sakarya University Journal of Science 29/4 (August2025), 363-382. https://doi.org/10.16984/saufenbilder.1681034.
JAMA Okur HE. Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding. SAUJS. 2025;29:363–382.
MLA Okur, H. Esma. “Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding”. Sakarya University Journal of Science, vol. 29, no. 4, 2025, pp. 363-82, doi:10.16984/saufenbilder.1681034.
Vancouver Okur HE. Crystallization of Biogenic Hydroxyapatite: Phase Purity and Morphological Control via Successive Annealing and Grinding. SAUJS. 2025;29(4):363-82.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255    33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .