Research Article
BibTex RIS Cite

Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing

Year 2025, Volume: 29 Issue: 5, 522 - 538, 27.10.2025
https://doi.org/10.16984/saufenbilder.1716892

Abstract

Induced pluripotent stem cells (iPSCs) offer a groundbreaking technology, which has transformed translational research and clinical applications in a wide range of fields, such as regenerative medicine, tissue engineering, cell therapy, disease modeling, developmental biology, etc. iPSCs are derived from terminally differentiated somatic cells by reprogramming the genetic and epigenetic program back to the pluripotent stem cell characteristics. iPSCs are very identical to embryonic stem cells in regards to differentiation into many cell types; however, iPSCs are exempt from the legal or ethical issues. These advantages enable iPSCs to advance the cell therapy and transplantation strategies. Nonetheless, low reprogramming efficiency and the risk for tumorigenicity are still limitations in the application of iPSCs in practice because the usage of the same pluripotency factors in all somatic cell types remains incapable of an efficient reprogramming. Here, we accomplished a holistic meta-analysis of the transcriptome datasets in a bidirectional perspective to achieve significant pluripotency-related genes that can commonly be applicable in all origin cells. The current study suggested prospective reprogramming factors, such as POLR3G, TERF1, and PHC1. Meanwhile, integrated drug repurposing also revealed certain small chemical molecules, which can promote transgene-free reprogramming and safer iPSC generation protocols.

References

  • K. Takahashi, S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006.
  • P. Karagiannis, K. Takahashi, M. Saito, Y. Yoshida, K. Okita, A. Watanabe, H. Inoue, J. K. Yamashita, M. Todani, M. Nakagawa, M. Osawa, Y. Yashiro, S. Yamanaka, K. Osafune, “Induced pluripotent stem cells and their use in human models of disease and development,” Physiological Reviews, vol. 99, no. 1, pp. 79–114, 2019.
  • K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, S. Yamanaka, “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007.
  • K. Lin, A. Z. Xiao, “Quality control towards the application of induced pluripotent stem cells,” Current Opinion in Genetics & Development, vol. 46, pp. 164–169, 2017.
  • A. Al Abbar, S. C. Ngai, N. Nograles, S. Y. Alhaji, S. Abdullah, “Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy,” Bioresearch Open Access, vol. 9, no. 1, p. 121, 2020.
  • Y. Qiao, O. S. Agboola, X. Hu, Y. Wu, L. Lei, “Tumorigenic and immunogenic properties of induced pluripotent stem cells: A promising cancer vaccine,” Stem Cell Reviews and Reports, vol. 16, no. 6, pp. 1049–1061, 2020.
  • C. Zhong, M. Liu, X. Pan, H. Zhu, “Tumorigenicity risk of iPSCs in vivo: Nip it in the bud,” Precision Clinical Medicine, vol. 5, no. 1, 2022.
  • Y. C. Lin, C. C. Ku, K. Wuputra, C. J. Liu, D. C. Wu, M. Satou, Y. Mitsui, S. Saito, K. K. Yokoyama, “Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells,” International Journal of Molecular Sciences, vol. 25, no. 10, p. 5177, 2024.
  • C. Hu, L. Li, “Current reprogramming systems in regenerative medicine: From somatic cells to induced pluripotent stem cells,” Regenerative Medicine, vol. 11, no. 1, pp. 91–105, 2016.
  • T. Pozner, C. Grandizio, M. W. Mitchell, N. Turan, L. Scheinfeldt, “Human iPSC reprogramming success: The impact of approaches and source materials,” Stem Cells International, vol. 2025, no. 1, p. 2223645, 2025.
  • K. Nishimura, M. Ohtaka, H. Takada, A. Kurisaki, N. V. K. Tran, Y. T. H. Tran, K. Hisatake, M. Sano, M. Nakanishi, “Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302,” Stem Cell Research, vol. 23, pp. 13–19, 2017.
  • K. Nishino, Y. Arai, K. Takasawa, M. Toyoda, M. Yamazaki-Inoue, T. Sugawara, H. Akutsu, K. Nishimura, M. Ohtaka, M. Nakanishi, A. Umezawa, “Epigenetic-scale comparison of human iPSCs generated by retrovirus, Sendai virus or episomal vectors,” Regenerative Therapy, vol. 9, pp. 71–78, 2018.
  • M. S. Poetsch, A. Strano, K. Guan, “Human induced pluripotent stem cells: From cell origin, genomic stability, and epigenetic memory to translational medicine,” Stem Cells, vol. 40, no. 6, pp. 546–555, 2022.
  • P. H. L. Krijger, B. Di Stefano, E. de Wit, F. Limone, C. van Oevelen, W. de Laat, T. Graf, “Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming,” Cell Stem Cell, vol. 18, no. 5, pp. 597–610, 2016.
  • T. Vierbuchen, M. Wernig, “Molecular roadblocks for cellular reprogramming,” Molecules and Cells, vol. 47, no. 6, pp. 827–838, 2012.
  • J. Krauskopf, K. Eggermont, R. F. Madeiro Da Costa, S. Bohler, D. Hauser, F. Caiment, T. M. de Kok, C. Verfaillie, J.C. Kleinjans, “Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson’s disease,” Mol Psychiatry, vol. 27, no. 10, pp. 4355–4367, 2022.
  • E. E. Burke, J. G. Chenoweth, J. H. Shin, L. Collado-Torres, S. K. Kim, N. Micali, Y. Wang, C. Colantuoni, R. E. Straub, D. J. Hoeppner, H. Y. Chen, A. Sellers, K. Shibbani, G. R. Hamersky, M. Diaz Bustamante, B. N. Phan, W. S. Ulrich, C. Valencia, A. Jaishankar, A. J. Price, A. Rajpurohit, S. A. Semick, R. W. Bürli, J. C. Barrow, D. J. Hiler, S. C. Page, K. Martinowich, T. M. Hyde, J. E. Kleinman, K. F. Berman, J. A. Apud, A. J. Cross, N. J. Brandon, D. R. Weinberger, B. J. Maher, R. D. G. McKay, A. E. Jaffe, “Dissecting transcriptomic signatures of neuronal differentiation and maturation using iPSCs,” Nature Communications, vol. 11, no. 1, pp. 1–14, 2020.
  • Y. Xu, M. Zhang, W. Li, X. Zhu, X. Bao, B. Qin, A. P. Hutchins, M. A. Esteban, “Transcriptional control of somatic cell reprogramming,” Trends in Cell Biology, vol. 26, no. 4, pp. 272–288, 2016.
  • Y. Tanaka, E. Hysolli, J. Su, Y. Xiang, K. Y. Kim, M. Zhong, Y. Li, K. Heydari, G. Euskirchen, M. P. Snyder, X. Pan, S. M. Weissman, I. H. Park, “Transcriptome signature and regulation in human somatic cell reprogramming,” Stem Cell Reports, vol. 4, no. 6, pp. 1125–1139, 2015.
  • S. Masuda, J. Wu, T. Hishida, G. N. Pandian, H. Sugiyama, J. C. Izpisua Belmonte, “Chemically induced pluripotent stem cells (CiPSCs): A transgene-free approach,” Journal of Molecular Cell Biology, vol. 5, no. 5, pp. 354–355, 2013.
  • Y. Li, Q. Zhang, X. Yin, W. Yang, Y. Du, P. Hou, J. Ge, C. Liu, W. Zhang, X. Zhang, Y. Wu, H. Li, K. Liu, C. Wu, Z. Song, Y. Zhao, Y. Shi, H. Deng, “Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules,” Cell Research, vol. 21, no. 1, pp. 196–204, 2010.
  • J. Guan, G. Wang, J. Wang, Z. Zhang, Y. Fu, L. Cheng, G. Meng, Y. Lyu, J. Zhu, Y. Li, Y. Wang, S. Liuyang, B. Liu, Z. Yang, H. He, X. Zhong, Q. Chen, X. Zhang, S. Sun, W. Lai, Y. Shi, L. Liu, L. Wang, C. Li, S. Lu, H. Deng, “Chemical reprogramming of human somatic cells to pluripotent stem cells,” Nature, vol. 605, no. 7909, pp. 325–331, 2022.
  • I. Dorn, K. Klich, M. J. Arauzo-Bravo, M. Radstaak, S. Santourlidis, F. Ghanjati, T. F. Radke, O. E. Psathaki, G. Hargus, J. Kramer, M. Einhaus, J. B. Kim, G. Kögler, P. Wernet, H. R. Schöler, P. Schlenke, H. Zaehres, “Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin,” Haematologica, vol. 100, no. 1, pp. 32–41, 2015.
  • J. H. Lee, J. B. Lee, Z. Shapovalova, A. Fiebig-Comyn, R. R. Mitchell, S. Laronde, E. Szabo, Y. D. Benoit, M. Bhatia, “Somatic transcriptome priming gates lineage-specific differentiation potential of human-induced pluripotent stem cell states,” Nature Communications, vol. 5, no. 1, pp. 1–13, 2014.
  • The ENCODE Project Consortium, “An integrated encyclopedia of DNA elements in the human genome,” Nature, vol. 489, no. 7414, pp. 57–74, 2012.
  • J. Chen, M. Lin, J. J. Foxe, E. Pedrosa, A. Hrabovsky, R. Carroll, D. Zheng, H. M. Lachman, “Transcriptome comparison of human neurons generated using induced pluripotent stem cells derived from dental pulp and skin fibroblasts,” PLoS One, vol. 8, no. 10, p. e75682, 2013.
  • H. Zhang, C. Xue, R. Shah, K. Bermingham, C. C. Hinkle, W. Li, A. Rodrigues, J. Tabita-Martinez, J. S. Millar, M. Cuchel, E. E. Pashos, Y. Liu, R. Yan, W. Yang, S. J. Gosai, D. VanDorn, S. T. Chou, B. D. Gregory, E. E. Morrisey, M. Li, D. J. Rader, M. P. Reilly, “Functional Analysis and Transcriptomic Profiling of iPSC-Derived Macrophages and Their Application in Modeling Mendelian Disease,” Circulation Research, vol. 117, no. 1, pp. 17–28, 2015.
  • L. E. Viiri, T. Rantapero, M. Kiamehr, A. Alexanova, M. Oittinen, K. Viiri, H. Niskanen, M. Nykter, M. U. Kaikkonen, K. Aalto-Setala, “Extensive reprogramming of the nascent transcriptome during iPSC to hepatocyte differentiation,” Scientific Reports, vol. 9, no. 1, pp. 1–12, 2019.
  • Y. Murase, Y. Yabuta, H. Ohta, C. Yamashiro, T. Nakamura, T. Yamamoto, M. Saitou, M, “Long‐term expansion with germline potential of human primordial germ cell‐like cells in vitro,” EMBO Journal, vol. 39, no. 21, 2020.
  • Y. Benjamini, Y. Hochberg, “Controlling the false discovery rate: A practical and powerful approach to multiple testing,” Journal of the Royal Statistical Society: Series B (Methodological), vol. 57, no. 1, pp. 289–300, 1995.
  • P. Bardou, J. Mariette, F. Escudié, C. Djemiel, C. Klopp, “Jvenn: An interactive Venn diagram viewer,” BMC Bioinformatics, vol. 15, no. 1, pp. 1–7, 2014.
  • Y. Zhou, B. Zhou, L. Pache, M. Chang, A. H. Khodabakhshi, O. Tanaseichuk, C. Benner, S. K. Chanda, “Metascape provides a biologist-oriented resource for the analysis of systems-level datasets,” Nature Communications, vol. 10, no. 1, pp. 1–10, 2019.
  • D. Tang, M. Chen, X. Huang, G. Zhang, L. Zeng, G. Zhang, S. Wu, Y. Wang, “SRplot: A free online platform for data visualization and graphing,” PLoS One, vol. 18, no. 11, p. e0294236, 2023.
  • Y. T. Zhao, M. Fasolino, Z. Zhou, “Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals,” Frontiers in Biology, vol. 11, no. 4, pp. 311–322, 2016.
  • H. Chen, J. Guo, S. K. Mishra, P. Robson, M. Niranjan, J. Zheng, “Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development,” Bioinformatics, vol. 31, no. 7, pp. 1060–1066, 2015.
  • S. Thiagalingam, “Epigenetic memory in development and disease: Unraveling the mechanism,” Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol. 1873, no. 2, p. 188349, 2020.
  • E. Hörmanseder, “Epigenetic memory in reprogramming,” Current Opinion in Genetics and Development, vol. 70, pp. 24–31, 2021.
  • B. Nashun, P. W. Hill, P. Hajkova, “Reprogramming of cell fate: Epigenetic memory and the erasure of memories past,” EMBO Journal, vol. 34, no. 10, pp. 1296–1308, 2015.
  • Y. H. Lin, J. D. Lehle, J. R. McCarrey, “Source cell-type epigenetic memory persists in induced pluripotent cells but is lost in subsequently derived germline cells,” Frontiers in Cell and Developmental Biology, vol. 12, p. 1306530, 2024.
  • J. Cerneckis, H. Cai, Y. Shi, “Induced pluripotent stem cells (iPSCs): Molecular mechanisms of induction and applications,” Signal Transduction and Targeted Therapy, vol. 9, no. 1, pp. 1–26, 2024.
  • L. Kang, C. Yao, A. Khodadadi-Jamayran, W. Xu, R. Zhang, N. S. Banerjee, C. W. Chang, L. T. Chow, T. Townes, K. Hu, “The universal 3D3 antibody of human PODXL is pluripotent cytotoxic, and identifies a residual population after extended differentiation of pluripotent stem cells,” Stem Cells and Development, vol. 25, no. 7, pp. 556–568, 2016.
  • W. J. Chen, W. K. Huang, S. R. Pather, W. F. Chang, L. Y. Sung, H. C. Wu, M. Y. Liao, C. C. Lee, H. H. Wu, C. Y. Wu, K. S. Liao, C. Y. Lin, S. C. Yang, H. Lin, P. L. Lai, C. H. Ng, C. M. Hu, I. C. Chen, C. H. Chuang, C. Y. Lai, P. Y. Lin, Y. C. Lee, S. C. Schuyler, A. Schambach, F. L. Lu, J. Lu, “Podocalyxin-like protein 1 regulates pluripotency through the cholesterol biosynthesis pathway,” Advanced Science, vol. 10, no. 1, p. 2205451, 2023.
  • T. Schaefer, C. Lengerke, “SOX2 protein biochemistry in stemness, reprogramming, and cancer: The PI3K/AKT/SOX2 axis and beyond,” Oncogene, vol. 39, no. 2, pp. 278–292, 2019.
  • S. Corti, R. Bonjean, T. Legier, D. Rattier, C. Melon, P. Salin, E. A. Toso, M. Kyba, L. Kerkerian-Le Goff, F. Maina, R. Dono, “Enhanced differentiation of human induced pluripotent stem cells toward the midbrain dopaminergic neuron lineage through GLYPICAN-4 downregulation,” Stem Cells Translational Medicine, vol. 10, no. 5, pp. 725–742, 2021.
  • H. M. Chang, N. J. Martinez, J. E. Thornton, J. P. Hagan, K. D. Nguyen, R. I. Gregory, “Trim71 cooperates with microRNAs to repress Cdkn1a expression and promote embryonic stem cell proliferation,” Nature Communications, vol. 3, no. 1, pp. 1–10, 2012.
  • K. A. Worringer, T. A. Rand, Y. Hayashi, S. Sami, K. Takahashi, K. Tanabe, M. Narita, D. Srivastava, S. Yamanaka, “The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes,” Cell Stem Cell, vol. 14, no. 1, pp. 40–52, 2014.
  • S. Bhattacharyya, R. D. Mote, J. W. Freimer, M. Tiwari, S. Bansi Singh, S. Arumugam, Y. V. Narayana, R. Rajan, D. Subramanyam, D. et al., “Cell–cell adhesions in embryonic stem cells regulate the stability and transcriptional activity of β-catenin,” FEBS Letters, vol. 596, no. 13, pp. 1647–1660, 2022.
  • T. Ye, J. Li, Z. Sun, D. Liu, B. Zeng, Q. Zhao, J. Wang, H. R. Xing, “Cdh1 functions as an oncogene by inducing self-renewal of lung cancer stem-like cells via oncogenic pathways,” International Journal of Biological Sciences, vol. 16, no. 3, pp. 447–459, 2020.
  • C. E. Aban, A. Lombardi, G. Neiman, M. C. Biani, A. La Greca, A. Waisman, L. N. Moro, G. Sevlever, S. Miriuka, C. Luzzani, “Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021.
  • J. An, Y. Zheng, C. T. Dann, “Mesenchymal to epithelial transition mediated by CDH1 promotes spontaneous reprogramming of male germline stem cells to pluripotency,” Stem Cell Reports, vol. 8, no. 2, pp. 446–459, 2017.
  • L. Qiao, S. H. Dho, J. Y. Kim, L. K. Kim, “SEPHS1 is dispensable for pluripotency maintenance but indispensable for cardiac differentiation in mouse embryonic stem cells,” Biochemical and Biophysical Research Communications, vol. 590, pp. 125–131, 2022.
  • R. C. B. Wong, S. Pollan, H. Fong, A. Ibrahim, E. L. Smith, M. Ho, A. L. Laslett, P. J. Donovan, “A novel role for an RNA polymerase III Subunit POLR3G in regulating pluripotency in human embryonic stem cells,” Stem Cells, vol. 29, no. 10, pp. 1517–1527, 2011.
  • R. J. Lund, N. Rahkonen, M. Malonzo, L. Kauko, M. R. Emani, V. Kivinen, E. Närvä, E. Kemppainen, A. Laiho, H. Skottman, O. Hovatta, O. Rasool, M. Nykter, H. Lähdesmäki, R. Lahesmaa, “RNA Polymerase III Subunit POLR3G Regulates Specific Subsets of PolyA+ and SmallRNA transcriptomes and splicing in human pluripotent stem cells,” Stem Cell Reports, vol. 8, no. 5, pp. 1442–1454, 2017.
  • R. P. Schneider, I. Garrobo, M. Foronda, J. A. Palacios, R. M. Marión, I. Flores, S. Ortega, M. A. Blasco, “TRF1 is a stem cell marker and is essential for the generation of induced pluripotent stem cells,” Nature Communications, vol. 4, no. 1, pp. 1–16, 2013.
  • R. M. Marión, J. J. Montero, I. López de Silanes, O. Graña-Castro, P. Martínez, S. Schoeftner, J. A. Palacios-Fábrega, M. A. Blasco, “TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2,” Elife, vol. 8, e44656, 2019.
  • Q. Liu, G. Wang, Y. Lyu, M. Bai, Z. Jiapaer, W. Jia, T. Han, R. Weng, Y. Yang, Y. Yu, J. Kang, “The miR-590/Acvr2a/Terf1 axis regulates telomere elongation and pluripotency of mouse iPSCs,” Stem Cell Reports, vol. 11, no. 1, pp. 88–101, 2018.
  • R. H. Klein, P. Y. Tung, P. Somanath, H. J. Fehling, P. S. Knoepfler, “Genomic functions of developmental pluripotency associated factor 4 (Dppa4) in pluripotent stem cells and cancer,” Stem Cell Research, vol. 31, pp. 83–94, 2018.
  • R. H. Klein, P. S. Knoepfler, “DPPA2, DPPA4, and other DPPA factor epigenomic functions in cell fate and cancer,” Stem Cell Reports, vol. 16, no. 12, pp. 2844–2851, 2021.
  • P. Y. Tung, N. V. Varlakhanova, P. S. Knoepfler, “Identification of DPPA4 and DPPA2 as a novel family of pluripotency-related oncogenes,” Stem Cells, vol. 31, no. 11, pp. 2330–2342, 2013.
  • L. Morey, G. Pascual, L. Cozzuto, G. Roma, A. Wutz, S. A. Benitah, L. Di Croce, “Nonoverlapping functions of the polycomb group Cbx family of proteins in embryonic stem cells,” Cell Stem Cell, vol. 10, no. 1, pp. 47–62, 2012.
  • T. Barata, I. Duarte, M. E. Futschik, “Integration of stemness gene signatures reveals core functional modules of stem cells and potential novel stemness genes,” Genes (Basel), vol. 14, no. 3, p. 745, 2023.
  • L. Chen, Q. Tong, X. Chen, P. Jiang, H. Yu, Q. Zhao, L. Sun, C. Liu, B. Gu, Y. Zheng, L. Fei, X. Jiang, W. Li, G. Volpe, M. M. Abdul, G. Guo, J. Zhang, P. Qian, Q. Sun, D. Neculai, M. A. Esteban, C. Li, F. Wen, J. Ji, “PHC1 maintains pluripotency by organizing genome-wide chromatin interactions of the Nanog locus,” Nature Communications, vol. 12, no. 1, pp. 1–13, 2021.
  • W. Zhao, M. Liu, H. Ji, Y. Zhu, C. Wang, Y. Huang, X. Ma, G. Xing, Y. Xia, Q. Jiang, J. Qin, “The polycomb group protein Yaf2 regulates the pluripotency of embryonic stem cells in a phosphorylation-dependent manner,” The Journal of Biological Chemistry, vol. 293, no. 33, p. 12793, 2018.
  • Q. Zhou, Y. Lei, “ARMCX3 regulates ROS signaling, affects neural differentiation and inflammatory microenvironment in dental pulp stem cells,” Heliyon, vol. 10, no. 17, 2024.
  • S. Mirra, F. Ulloa, I. Gutierrez-Vallejo, E. Martì, E. Soriano, “Function of Armcx3 and Armc10/SVH genes in the regulation of progenitor proliferation and neural differentiation in the chicken spinal cord,” Frontiers in Cellular Neuroscience, vol. 10, no. MAR2016, p. 168336, 2016.
  • Z. Guo, M. Chen, Y. Chao, C. Cai, L. Liu, L. Zhao, L. Li, Q. R. Bai, Y. Xu, W. Niu, L. Shi, Y. Bi, D. Ren, F. Yuan, S. Shi, Q. Zeng, K. Han, Y. Shi, S. Bian, G. He, “RGCC balances self‐renewal and neuronal differentiation of neural stem cells in the developing mammalian neocortex,” EMBO Reports, vol. 22, no. 9, 2021.
  • K. Mulfaul, J. C. Giacalone, A. P. Voigt, M. J. Riker, D. Ochoa, I. C. Han, E. M. Stone, R. F. Mullins, B. A. Tucker, “Stepwise differentiation and functional characterization of human induced pluripotent stem cell-derived choroidal endothelial cells,” Stem Cell Research and Therapy, vol. 11, no. 1, pp. 1–10, 2020.
  • Y. A. Wang, R. Neff, W. M. Song, X. Zhou, S. Vatansever, M. J. Walsh, S. H. Chen, B. Zhang, “Multi-omics-based analysis of high grade serous ovarian cancer subtypes reveals distinct molecular processes linked to patient prognosis,” FEBS Open Bio, vol. 13, no. 4, pp. 617–637, 2023.
  • T. Ishida, S. Nakao, T. Ueyama, Y. Harada, T. Kawamura, T, “Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: involvement of hypoxia-inducible factor 1,” Inflammation and Regeneration, vol. 40, no. 8, 2020.
  • J. B. Su, D. Q. Pei, B. M. Qin, “Roles of small molecules in somatic cell reprogramming,” Acta Pharmacologica Sinica, vol. 34, no. 6, pp. 719–724, 2013.
  • F. Schröter, J. Adjaye, “The proteasome complex and the maintenance of pluripotency: Sustain the fate by mopping up?” Stem Cell Research and Therapy, vol. 5, no. 1, p. 24, 2014.
  • M. Bax, J. McKenna, D. Do-Ha, C. H. Stevens, S. Higginbottom, R. Balez, M. E. C. Cabral-da-Silva, N. E. Farrawell, M. Engel, P. Poronnik, J. J. Yerbury, D. N. Saunders, L. Ooi, “The ubiquitin proteasome system is a key regulator of pluripotent stem cell survival and motor neuron differentiation,” Cells, vol. 8, no. 6, p. 581, 2019.
  • E. Aleo, C. J. Henderson, A. Fontanini, B. Solazzo, C. Brancolini, “Identification of new compounds that trigger apoptosome-independent caspase activation and apoptosis,” Cancer Research, vol. 66, no. 18, pp. 9235–9244, 2006.
  • T. D. Lebedev, E. R. Vagapova, V. S. Prassolov, “The different impact of ERK inhibition on neuroblastoma, astrocytoma, and rhabdomyosarcoma cell differentiation,” Acta Naturae, vol. 13, no. 4, pp. 69–77, 2021.
  • J. K. Kim, L. G. Villa-Diaz, T. L. Saunders, R. P. Saul, S. Timilsina, F. Liu, Y. Mishina, P. H. Krebsbach, “Selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency,” Stem Cells, vol. 42, no. 1, pp. 13–28, 2024.
  • H. Kobayashi, H. Nishimura, N. Kudo, H. Osada, M. Yoshida, “A novel GSK3 inhibitor that promotes self-renewal in mouse embryonic stem cells,” Bioscience, Biotechnology, and Biochemistry, vol. 84, no. 10, pp. 2113–2120, 2020.
  • Y. Wu, Z. Ai, K. Yao, L. Cao, J. Du, X. Shi, Z. Guo, Y. Zhang, “CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression,” Experimental Cell Research, vol. 319, vol. 17, pp. 2684–2699, 2013.
  • N. Sato, L. Meijer, L. Skaltsounis, P. Greengard, A. H. Brivanlou, “Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor,” Nature Medicine, vol 10, no. 1, pp. 55–63, 2004.
There are 78 citations in total.

Details

Primary Language English
Subjects Structural Biology, Biochemistry and Cell Biology (Other)
Journal Section Research Article
Authors

Zihni Onur Çalışkaner 0000-0003-1385-1739

Early Pub Date October 21, 2025
Publication Date October 27, 2025
Submission Date June 10, 2025
Acceptance Date September 10, 2025
Published in Issue Year 2025 Volume: 29 Issue: 5

Cite

APA Çalışkaner, Z. O. (2025). Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing. Sakarya University Journal of Science, 29(5), 522-538. https://doi.org/10.16984/saufenbilder.1716892
AMA Çalışkaner ZO. Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing. SAUJS. October 2025;29(5):522-538. doi:10.16984/saufenbilder.1716892
Chicago Çalışkaner, Zihni Onur. “Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing”. Sakarya University Journal of Science 29, no. 5 (October 2025): 522-38. https://doi.org/10.16984/saufenbilder.1716892.
EndNote Çalışkaner ZO (October 1, 2025) Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing. Sakarya University Journal of Science 29 5 522–538.
IEEE Z. O. Çalışkaner, “Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing”, SAUJS, vol. 29, no. 5, pp. 522–538, 2025, doi: 10.16984/saufenbilder.1716892.
ISNAD Çalışkaner, Zihni Onur. “Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing”. Sakarya University Journal of Science 29/5 (October2025), 522-538. https://doi.org/10.16984/saufenbilder.1716892.
JAMA Çalışkaner ZO. Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing. SAUJS. 2025;29:522–538.
MLA Çalışkaner, Zihni Onur. “Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing”. Sakarya University Journal of Science, vol. 29, no. 5, 2025, pp. 522-38, doi:10.16984/saufenbilder.1716892.
Vancouver Çalışkaner ZO. Holistic Transcriptomic Analysis Identifies Prospective Reprogramming Factors for Induced Pluripotent Stem Cell Manufacturing. SAUJS. 2025;29(5):522-38.


INDEXING & ABSTRACTING & ARCHIVING

33418 33537  30939     30940 30943 30941  30942  33255    33253  33254

30944  30945  30946   34239




30930Bu eser Creative Commons Atıf-Ticari Olmayan 4.0 Uluslararası Lisans   kapsamında lisanslanmıştır .