Research Article
BibTex RIS Cite

Changes in Germination, Antioxidant Enzyme Activities and Biochemical Contents of Safflower (Carthamus tinctorius L.) Under Different Salinity Levels

Year 2022, , 185 - 194, 27.05.2022
https://doi.org/10.29233/sdufeffd.1090142

Abstract

The present study was carried out using Dinçer and Olas safflower varieties at 5 different salt (NaCl) concentrations (0, 50, 100, 150, and 200 mM) for 14 days. The germination percentages of the cultivars under salt conditions as well as the activities of antioxidant enzymes (SOD, CAT, POD and APX) and biochemical changes (protein and MDA) in the seedlings were determined. The germination percentage decreased with increased salt concentrations, and the greatest decrease in germination percentage was observed at a 200 mM salt concentration by 34% in both cultivars. The activity of superoxide dismutase (SOD) increased at low salt concentrations, but decreased after 100 and 150 mM salt concentrations, respectively. Catalase (CAT) and ascorbate peroxidase (APX) activities, as well as malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, increased with increasing salt concentrations at Dinçer and Olas, but total soluble protein content decreased with increasing salt concentration. Peroxidase (POD) activity was not significantly affected by salt stress in safflower. Germination percentage showed negative correlations with CAT, MDA and H2O2 levels, and showed a positive correlation with soluble protein content under salt stress in safflower. The present results may be useful to identify mechanisms of salt tolerance involving antioxidant enzyme activities and biochemical changes in safflower seedlings.

Thanks

Sercan Önder was financially supported by the Council of Higher Education under YÖK 100/2000 fellowship program for graduate students. Present research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  • [1] E.A. Weiss, Oil Seed Crops. Oxford: Blackwell Science, 2000, pp. 384.
  • [2] P. Shrivastava and R. Kumar, “Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation,” Saudi J Biol Sci, 22 (2), 123-131, 2015.
  • [3] A. Jamil, S. Riaz, M. Ashraf and M. R. Foolad, “Gene expression profiling of plants under salt stress,” Crit Rev Plant Sci, 30 (5), 435-458, 2011.
  • [4] Ş. C. Erdal and H. Cakirlar, “Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars,” Turk J Biol, 38 (4), 549-560, 2014.
  • [5] G. Miller, N. Suzuki, S. Ciftci-Yilmaz and R. Mittler, “Reactive oxygen species homeostasis and signalling during drought and salinity stresses,” Plant Cell Environ, 33, 453-467, 2010.
  • [6] M. Kavas, O. E. Akça, U. C. Akçay, B. Peksel, S. Eroğlu, H. A. Öktem and M. Yucel, “Antioxidant responses of peanut (Arachis hypogaea L.) seedlings to prolonged salt-induced stress,” Arch Biol Sci, 67 (4), 1303-1312, 2015.
  • [7] M. P. Apse and E. Blumwald, “Engineering salt tolerance in plants,” Curr Opin Biotechnol, 13, 146-150, 2002.
  • [8] A. K. Parida and A. B. Das, “Salt tolerance and salinity effects on plants: a review,” Ecotox Environ Safe, 60, 324-349, (2005).
  • [9] M. Melchiorre, G. E. Quero, R. Parola, R. Racca, V. S. Trippi and R. Lascano, “Physiological characterization of four model Lotus diploid genotypes: L. japonicus (MG20 and Gifu), L. filicaulis, and L. burttii under salt stress,” Plant Sci, 177, 618-628, 2009.
  • [10] M. Heidari, “Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress,” Agr Sci China, 9 (4), 504-511, 2010.
  • [11] D. A. Priestley, Seed Aging. Ithaca: Cornell University Press, 1986, pp. 304.
  • [12] P. Irato and G. Santovito, “Enzymatic and non-enzymatic molecules with antioxidant function,” Antioxidants, 10 (4), 579, 2021.
  • [13] V. Shulaev and D. J. “Oliver, metabolic and proteomic markers for oxidative stress. new tools for reactive oxygen species research,” Plant Physiol, 141 (2), 367-372, 2006.
  • [14] P. Ahmad, S. Jamsheed, A. Hameed, S. Rasool, I. Sharma, M. Azooz and M. Hasanuzzaman, Drought Stress Induced Oxidative Damage and Antioxidants in Plants. New York: Academic Press, 2014, ch. 11.
  • [15] ISTA, International rules for seed testing edition. Bassersdorf: Switzerland, 2019.
  • [16] M. Tonguç, S. Önder and M. Mutlucan, “Determination of germination parameters of safflower (Carthamus tinctorius L.) cultivars under salt stress,” SDÜ Fen Bil Enst Der, 25 (2), 155-161, 2021.
  • [17] M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal Biochem, 72 (1-2), 248-254, 1976.
  • [18] N. G. Constantine and K. R. Stanley, “Superoxide dismutases,” Plant Physiol, 59, 315-318, 1977.
  • [19] A. L. Jiang, S. P. Tian and Y. Xu, “Effects of controlled atmospheres with high-O2 or high CO2 concentrations on postharvest physiology and storability of ‘‘Napoleon’’ sweet cherry,” J Integr Plant Biol 44, 925-930, 2002.
  • [20] R. F. Beers and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” Biol Chem, 195 (1), 133-140, 1952.
  • [21] Y. Nakano and K. Asada, “Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts,” Plant Cell Physiol, 22, 867-880, 1981.
  • [22] V. Velikova, I. Yordanov and A. Edreva, “Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines,” Plant Sci, 151, 59-66, 2000.
  • [23] F. Tonguç, M. Tonguç and S. Önder, “Changes in protein and sugar contents during the germination period of Turkish red pine (Pinus brutia Ten.),” ArtGRID, 2, 23-29, 2020.
  • [24] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein measurement with the Folin phenol reagent,” J Biol Chem, 193, 265-275, 1951.
  • [25] C. Chang, B. Wang, L. Shi, Y. Li, L. Duo and W. Zhang, “Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate,” J Plant Physiol, 167, 152-1156, 2010.
  • [26] N. Jabeen and R. Ahmad, “The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan,” J Sci Food Agric, 93 (7), 1699-1705, 2013.
  • [27] M. D. Kaya, G. Akdoğan, E. G. Kulan, H. Dağhan and A. Sarı, “Salinity tolerance classification of sunflower (Helianthus annuus L.) and safflower (Carthamus tinctorius L.) by cluster and principal component analysis,” Appl Ecol Environ Res, 17 (2), 3849-3857, 2019.
  • [28] N. B. Amor, K. B. Hamed, A. Debez, C. Grignon and C. Abdelly, “Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity,” Plant Sci, 168, 889-899, 2005.
  • [29] N. A. Khan, R. Nazar and N. A. Anjum, “Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress,” Sci Hortic, 122 (3), 455-460, 2009.
  • [30] C. Sudhakar, A. Lakshmi, S. Giridarakumar, “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity,” Plant Sci, 161, 3, 613-619, 2001.
  • [31] S. Radić, M. Radić-Stojković and B. Pevalek-Kozlina, “Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots,” J Plant Physiol, 163, 12, 1284-1292, 2006.
  • [32] F. Alasvandyari and B. Mahdavi, “Effect of glycinebetaine on growth and antioxidant enzymes of safflower under salinity stress condition,” Agric For, 63 (3), 85-95, 2017.
  • [33] S. M. S. Jalali-e-Emam, B. Alizadeh, M. Zaefizadeh, R. A. Zakarya and M. Khayatnezhad, “Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genotypes of Colza (Brassica napus L.),” Middle East J Sci Res, 7, 7-11, 2011.
  • [34] B. Joseph and D. Jini, “Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes,” Asian J Agric Res, 5,17-27, 2011.
  • [35] H. Koca, M. Bor, F. Özdemir and G. Türkan, “The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars,” Environ Exp Bot, 60, 344-351, 2007.
  • [36] F. Shaki, H. Ebrahimzadeh Maboud and V. Niknam, “Central role of salicylic acid in resistance of safflower (Carthamus tinctorius L.) against salinity,” J Plant Interact, 12 (1), 414-420, 2017.
  • [37] M. H. Lee, E. J. Cho, S. G. Wi, H. Bae, J. E. Kim, J. Y. Cho, S. Lee, J. H. Kim and B. Y. Chung, “Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress,” Plant Physiol Biochem, 70, 325-335, 2013.
  • [38] X. Puyang, M. An, L. Han and X. Zhang, “Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars,” Ecotoxicol Environ Saf, 117, 96-106, 2015.
  • [39] K. Chakraborty, S. K. Bishi, N. Goswami, A. L. Singh and P. V. Zala, “Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes,” Environ Exp Bot, 128, 79-90, 2016.
  • [40] S. S. Gill and N. Tuteja, “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants,” Plant Physiol Biochem, 48, 909-930, 2010.
  • [41] P. Sharma, A. B. Jha, R. S. Dubey and M. Pessarakli, “Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions,” J Bot, 2012, 1-26, 2012.
  • [42] X. -S. Wang and J. -G. Han, “Changes of proline content, activity and active isoform of antioxidative enzymes in two alfalfa cultivars under salt stress,” Agr Sci China, 8 (4), 431-440, 2009.
  • [43] Y. He, Z. Zhu, J. Yang, X. Ni and B. Zhu, “Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity,” Environ Exp Bot, 66, 270-278, 2009.
  • [44] F. Eyidogan and M. T. Öz, “Effect of salinity on antioxidant responses of chickpea seedlings,” Acta Physiol Plant, 29, 485-493, 2007.
  • [45] B. Khunpon, C. U. Suriyan, B. Faiyue, J. Uthaibutra and K. Saengnil, “Regulation on antioxidant defense system in rice seedlings (Oryza sativa L. ssp. indica cv.‘Pathumthani 1’) under salt stress by paclobutrazol foliar application,” Not Bot Horti Agrobot Cluj Napoca, 47 (2), 368-377, 2019.
  • [46] H. Hassanpour, R. A. Khavari-Nejad, V. Niknam, F. Najafi and K. Razavi, “Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress,” Physiol Mol Biol Plants, 19 (4), 489-498, 2013.
  • [47] F. Shaki, H. E. Maboud and V. Niknam, “Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid,” Curr Plant Biol, 13, 16-22, 2018.

Farklı Tuzluluk Seviyelerinde Aspir’de (Carthamus tinctorius L.) Çimlenme, Antioksidan Enzim Aktiviteleri ve Biyokimyasal Bileşenlerin Değişimi

Year 2022, , 185 - 194, 27.05.2022
https://doi.org/10.29233/sdufeffd.1090142

Abstract

Mevcut çalışma Dinçer ve Olas aspir çeşitleri kullanılarak 5 farklı tuz (NaCl) konsantrasyonunda (0, 50, 100, 150 ve 200 mM) 14 gün boyunca yapılmıştır. Çeşitlerin tuzluluk şartları altında çimlenme oranları ve fideciklerdeki antioksidan enzim aktiviteleri (SOD, CAT, POD ve APX) ve biyokimyasal değişiklikler (protein and MDA) belirlenmiştir. Tuz konsantrasyonu arttıkça çimlenme oranı azalmış ve her iki çeşit için çimlenme oranındaki en yüksek düşüş %34 ile 200 mM tuz konsantrasyonunda gözlenmiştir. Süperoksit dismutaz (SOD) aktivitesi düşük tuz konsantrasyonlarında artmış fakat Dinçer çeşidinde 100 mM ve Olas çeşidinde 150 mM tuz konsantrasyonlarında SOD aktivitesinin azaldığı gözlenmiştir. Dinçer ve Olas çeşitlerinde katalaz (CAT) ve askorbat peroksidaz (APX) aktivitesi, malondialdehit (MDA) ve hidrojen peroksit (H2O2) miktarlarının tuz konsantrasyonlarına bağlı olarak arttığı fakat toplam çözünebilir protein içeriğinin ise azaldığı belirlenmiştir. Peroksidaz (POD) aktivitesi aspirde tuz stresine bağlı olarak önemli bir değişim göstermemiştir. Aspirde tuz stresi sonucu çimlenme yüzdesindeki azalma CAT, MDA ve H2O2 ile negatif, çözünür protein miktarı ile pozitif korelasyon göstermiştir. SOD aktivitesindeki değişim ise POD, CAT, MDA ve H2O2 ile pozitif korelasyonları göstermiştir. Mevcut sonuçlar, aspirin tuzluluk toleransını regüle etmek için fideciklerdeki antioksidan enzim aktiviteleri ve biyokimyasal içeriklerdeki değişimler hakkında yararlı olacaktır.

References

  • [1] E.A. Weiss, Oil Seed Crops. Oxford: Blackwell Science, 2000, pp. 384.
  • [2] P. Shrivastava and R. Kumar, “Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation,” Saudi J Biol Sci, 22 (2), 123-131, 2015.
  • [3] A. Jamil, S. Riaz, M. Ashraf and M. R. Foolad, “Gene expression profiling of plants under salt stress,” Crit Rev Plant Sci, 30 (5), 435-458, 2011.
  • [4] Ş. C. Erdal and H. Cakirlar, “Impact of salt stress on photosystem II efficiency and antioxidant enzyme activities of safflower (Carthamus tinctorius L.) cultivars,” Turk J Biol, 38 (4), 549-560, 2014.
  • [5] G. Miller, N. Suzuki, S. Ciftci-Yilmaz and R. Mittler, “Reactive oxygen species homeostasis and signalling during drought and salinity stresses,” Plant Cell Environ, 33, 453-467, 2010.
  • [6] M. Kavas, O. E. Akça, U. C. Akçay, B. Peksel, S. Eroğlu, H. A. Öktem and M. Yucel, “Antioxidant responses of peanut (Arachis hypogaea L.) seedlings to prolonged salt-induced stress,” Arch Biol Sci, 67 (4), 1303-1312, 2015.
  • [7] M. P. Apse and E. Blumwald, “Engineering salt tolerance in plants,” Curr Opin Biotechnol, 13, 146-150, 2002.
  • [8] A. K. Parida and A. B. Das, “Salt tolerance and salinity effects on plants: a review,” Ecotox Environ Safe, 60, 324-349, (2005).
  • [9] M. Melchiorre, G. E. Quero, R. Parola, R. Racca, V. S. Trippi and R. Lascano, “Physiological characterization of four model Lotus diploid genotypes: L. japonicus (MG20 and Gifu), L. filicaulis, and L. burttii under salt stress,” Plant Sci, 177, 618-628, 2009.
  • [10] M. Heidari, “Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress,” Agr Sci China, 9 (4), 504-511, 2010.
  • [11] D. A. Priestley, Seed Aging. Ithaca: Cornell University Press, 1986, pp. 304.
  • [12] P. Irato and G. Santovito, “Enzymatic and non-enzymatic molecules with antioxidant function,” Antioxidants, 10 (4), 579, 2021.
  • [13] V. Shulaev and D. J. “Oliver, metabolic and proteomic markers for oxidative stress. new tools for reactive oxygen species research,” Plant Physiol, 141 (2), 367-372, 2006.
  • [14] P. Ahmad, S. Jamsheed, A. Hameed, S. Rasool, I. Sharma, M. Azooz and M. Hasanuzzaman, Drought Stress Induced Oxidative Damage and Antioxidants in Plants. New York: Academic Press, 2014, ch. 11.
  • [15] ISTA, International rules for seed testing edition. Bassersdorf: Switzerland, 2019.
  • [16] M. Tonguç, S. Önder and M. Mutlucan, “Determination of germination parameters of safflower (Carthamus tinctorius L.) cultivars under salt stress,” SDÜ Fen Bil Enst Der, 25 (2), 155-161, 2021.
  • [17] M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal Biochem, 72 (1-2), 248-254, 1976.
  • [18] N. G. Constantine and K. R. Stanley, “Superoxide dismutases,” Plant Physiol, 59, 315-318, 1977.
  • [19] A. L. Jiang, S. P. Tian and Y. Xu, “Effects of controlled atmospheres with high-O2 or high CO2 concentrations on postharvest physiology and storability of ‘‘Napoleon’’ sweet cherry,” J Integr Plant Biol 44, 925-930, 2002.
  • [20] R. F. Beers and I. W. Sizer, “A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase,” Biol Chem, 195 (1), 133-140, 1952.
  • [21] Y. Nakano and K. Asada, “Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts,” Plant Cell Physiol, 22, 867-880, 1981.
  • [22] V. Velikova, I. Yordanov and A. Edreva, “Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines,” Plant Sci, 151, 59-66, 2000.
  • [23] F. Tonguç, M. Tonguç and S. Önder, “Changes in protein and sugar contents during the germination period of Turkish red pine (Pinus brutia Ten.),” ArtGRID, 2, 23-29, 2020.
  • [24] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, “Protein measurement with the Folin phenol reagent,” J Biol Chem, 193, 265-275, 1951.
  • [25] C. Chang, B. Wang, L. Shi, Y. Li, L. Duo and W. Zhang, “Alleviation of salt stress-induced inhibition of seed germination in cucumber (Cucumis sativus L.) by ethylene and glutamate,” J Plant Physiol, 167, 152-1156, 2010.
  • [26] N. Jabeen and R. Ahmad, “The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan,” J Sci Food Agric, 93 (7), 1699-1705, 2013.
  • [27] M. D. Kaya, G. Akdoğan, E. G. Kulan, H. Dağhan and A. Sarı, “Salinity tolerance classification of sunflower (Helianthus annuus L.) and safflower (Carthamus tinctorius L.) by cluster and principal component analysis,” Appl Ecol Environ Res, 17 (2), 3849-3857, 2019.
  • [28] N. B. Amor, K. B. Hamed, A. Debez, C. Grignon and C. Abdelly, “Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity,” Plant Sci, 168, 889-899, 2005.
  • [29] N. A. Khan, R. Nazar and N. A. Anjum, “Growth, photosynthesis and antioxidant metabolism in mustard (Brassica juncea L.) cultivars differing in ATP-sulfurylase activity under salinity stress,” Sci Hortic, 122 (3), 455-460, 2009.
  • [30] C. Sudhakar, A. Lakshmi, S. Giridarakumar, “Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity,” Plant Sci, 161, 3, 613-619, 2001.
  • [31] S. Radić, M. Radić-Stojković and B. Pevalek-Kozlina, “Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots,” J Plant Physiol, 163, 12, 1284-1292, 2006.
  • [32] F. Alasvandyari and B. Mahdavi, “Effect of glycinebetaine on growth and antioxidant enzymes of safflower under salinity stress condition,” Agric For, 63 (3), 85-95, 2017.
  • [33] S. M. S. Jalali-e-Emam, B. Alizadeh, M. Zaefizadeh, R. A. Zakarya and M. Khayatnezhad, “Superoxide dismutase (SOD) activity in NaCl stress in salt-sensitive and salt-tolerance genotypes of Colza (Brassica napus L.),” Middle East J Sci Res, 7, 7-11, 2011.
  • [34] B. Joseph and D. Jini, “Development of salt stress-tolerant plants by gene manipulation of antioxidant enzymes,” Asian J Agric Res, 5,17-27, 2011.
  • [35] H. Koca, M. Bor, F. Özdemir and G. Türkan, “The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars,” Environ Exp Bot, 60, 344-351, 2007.
  • [36] F. Shaki, H. Ebrahimzadeh Maboud and V. Niknam, “Central role of salicylic acid in resistance of safflower (Carthamus tinctorius L.) against salinity,” J Plant Interact, 12 (1), 414-420, 2017.
  • [37] M. H. Lee, E. J. Cho, S. G. Wi, H. Bae, J. E. Kim, J. Y. Cho, S. Lee, J. H. Kim and B. Y. Chung, “Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress,” Plant Physiol Biochem, 70, 325-335, 2013.
  • [38] X. Puyang, M. An, L. Han and X. Zhang, “Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars,” Ecotoxicol Environ Saf, 117, 96-106, 2015.
  • [39] K. Chakraborty, S. K. Bishi, N. Goswami, A. L. Singh and P. V. Zala, “Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes,” Environ Exp Bot, 128, 79-90, 2016.
  • [40] S. S. Gill and N. Tuteja, “Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants,” Plant Physiol Biochem, 48, 909-930, 2010.
  • [41] P. Sharma, A. B. Jha, R. S. Dubey and M. Pessarakli, “Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions,” J Bot, 2012, 1-26, 2012.
  • [42] X. -S. Wang and J. -G. Han, “Changes of proline content, activity and active isoform of antioxidative enzymes in two alfalfa cultivars under salt stress,” Agr Sci China, 8 (4), 431-440, 2009.
  • [43] Y. He, Z. Zhu, J. Yang, X. Ni and B. Zhu, “Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity,” Environ Exp Bot, 66, 270-278, 2009.
  • [44] F. Eyidogan and M. T. Öz, “Effect of salinity on antioxidant responses of chickpea seedlings,” Acta Physiol Plant, 29, 485-493, 2007.
  • [45] B. Khunpon, C. U. Suriyan, B. Faiyue, J. Uthaibutra and K. Saengnil, “Regulation on antioxidant defense system in rice seedlings (Oryza sativa L. ssp. indica cv.‘Pathumthani 1’) under salt stress by paclobutrazol foliar application,” Not Bot Horti Agrobot Cluj Napoca, 47 (2), 368-377, 2019.
  • [46] H. Hassanpour, R. A. Khavari-Nejad, V. Niknam, F. Najafi and K. Razavi, “Penconazole induced changes in photosynthesis, ion acquisition and protein profile of Mentha pulegium L. under drought stress,” Physiol Mol Biol Plants, 19 (4), 489-498, 2013.
  • [47] F. Shaki, H. E. Maboud and V. Niknam, “Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid,” Curr Plant Biol, 13, 16-22, 2018.
There are 47 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Makaleler
Authors

Sercan Önder 0000-0002-8065-288X

Ebru Dayan 0000-0002-2626-7753

Yaşar Karakurt 0000-0003-3914-0652

Muhammet Tonguç 0000-0003-1292-2910

Publication Date May 27, 2022
Published in Issue Year 2022

Cite

IEEE S. Önder, E. Dayan, Y. Karakurt, and M. Tonguç, “Changes in Germination, Antioxidant Enzyme Activities and Biochemical Contents of Safflower (Carthamus tinctorius L.) Under Different Salinity Levels”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 1, pp. 185–194, 2022, doi: 10.29233/sdufeffd.1090142.