Research Article
BibTex RIS Cite

Optical Properties of Semiconductor Cylindrical Quantum Dot

Year 2022, , 543 - 550, 25.11.2022
https://doi.org/10.29233/sdufeffd.1139195

Abstract

In this study, the optical properties of semiconductor cylindrical quantum dots were investigated. Considering the effective mass and parabolic band approach, the energy spectrum and wave function of the semiconductor cylindrical quantum dot are calculated using the diagonalization method. With the help of energy spectrum and wave function expressions, the expression of the absorption coefficient for the optical transitions between the lower energy levels was calculated. The absorption coefficient of the semiconductor cylindrical quantum dot we obtained, as a function of the incident photon energy, has been numerically investigated according to the different values of the radius and height parameters of the cylinder. In addition, the variation of the absorption coefficient according to different values of the magnetic field was investigated. According to the results, it has been determined that the absorption coefficient of the semiconductor quantum dot is independent of the change of the magnetic field and depends on the change of the radius and height parameters of the cylinder.

References

  • J. H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, 1998, pp 427.
  • B. Dieter, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures. John Wiley and Sons, 1999, pp 325.
  • L. L. Chang and K. Ploog, Molecular Beam Epitaxy and Heterostructures. Martinus Nijhoff Publishers, 1985, pp 677.
  • C. Lamberti, Characterization of Semiconductor Heterostructures and Nanostructures. Elsevier B.V., 2008, pp 483.
  • N. G. Einspruch and W. R. Frensley, Eds., Heterostructures and Quantum Devices. Academic Press Inc., 1994 pp 446.
  • V. Mitin, V. Kochelap, and M. A. Stroscio, Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press, 1999, pp 635.
  • E. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Second. Springer-Verlag, 1997, pp 379.
  • R. F. Wallis and M. Balkanski, Semiconductor Physics and Aplications. Oxford University Press, 2000, pp 512.
  • T. C. McGill, C. M. Sotomayor Torres, and W. Gebhardt, Eds., Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors. Plenum Press, 1988, pp 344.
  • S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, 1998, pp 241.
  • D. C. Bensahel, L. T. Canham, and S. Ossicini, Eds., Optical Properties of Low Dimensional Silicon Structures. Springer, 1993, pp 235.
  • T. Ogawa and Y. Kanemitsu, Optical Properties of Low-Dimensional Materials. World Scientific, 1998, pp 468.
  • C. H. Liu and B. R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. Sect. A Gen. At. Solid State Phys., 372 (6), 888–892, 2008.
  • F. Ungan, M. K. Bahar, S. Pal, and M. E. Mora-Ramos, “Electron-related nonlinear optical properties of cylindrical quantum dot with the Rosen-Morse axial potential,” Commun. Theor. Phys., 72 (7), 2020.
  • G. Safarpour, A. Zamani, M. A. Izadi, and H. Ganjipour, “Laser radiation effect on the optical properties of a spherical quantum dot confined in a cylindrical nanowire,” J. Lumin., 147, 295–303, 2014.
  • G. Safarpour, M. A. Izadi, M. Novzari, E. Niknam, and M. Moradi, “Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire,” Phys. E Low-Dimensional Syst. Nanostructures, 59, 124–132, 2014.
  • E. Kasapoglu, C. A. Duque, M. E. Mora-Ramos, and I. Sökmen, “The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga1-xAlxAs/GaAs quantum dot under applied electric field,” Phys. B Condens. Matter, 74, 15–20, 2015.
  • R. Khordad, “Effect of magnetic field on linear and nonlinear optical properties in a parabolic cylindrical quantum dot,” J. Opt., 42 (2), 83–91, 2013.
  • F. Ungan, M. K. Bahar, M. G. Barseghyan, L. M. Pérez, and D. Laroze, “Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential,” Optik (Stuttg)., 236 (September 2020), 2021.
  • R. E. Acosta, A. Zapata, C. A. Duque, and M. E. Mora-Ramos, “Electric field effects on excitons in cylindrical quantum dots with asymmetric axial potential. Influence on the nonlinear optical properties,” Phys. E Low-Dimensional Syst. Nanostructures, 44 (9), 1936–1944, 2012.
  • M. S. Atoyan, E. M. Kazaryan, and H. A. Sarkisyan, “Direct interband light absorption in a cylindrical quantum dot in quantizing magnetic field,” Phys. E Low-Dimensional Syst. Nanostructures, 22 (4), 860–866, 2004.
  • A. Efros, “Interband light absorption in semiconductor spheres,” Sov. physics. Semicond., 16 (7), 772–775, 1982.
  • S. Liang, W. Xie, and H. Shen, “Optical properties in a two-dimensional quantum ring: Confinement potential and Aharonov-Bohm effect,” Opt. Commun., 284, 24, 5818–5828, 2011.
  • O. Olendski and T. Barakat, “Magnetic field control of the intraband optical absorption in two-dimensional quantum rings,” J. Appl. Phys., 115, 8, 2014.
  • D. Bejan, C. Stan, and E. C. Niculescu, “Optical properties of an elliptic quantum ring: Eccentricity and electric field effects,” Opt. Mater. (Amst)., 78, 207–219, 2018.
  • A. Turkoglu, H. Dakhlaoui, M. E. Mora-Ramos, and F. Ungan, “Optical properties of a quantum well with Razavy confinement potential: Role of applied external fields,” Phys. E Low-Dimensional Syst. Nanostructures, 134 (June), p. 114919, 2021.
  • S. L. Chuang, Physics of Photonic Devices, Second. Wiley, 2009, pp 841.
  • A. Babanlı and V. Sabyrov, “Optical properties of cylindrical quantum dots with diluted magnetic semiconductors structure,” Low Temp. Phys., 48 (10), 934–940, Aug. 2022.

Yarıiletken Silindirik Kuantum Noktanın Optik Özellikleri

Year 2022, , 543 - 550, 25.11.2022
https://doi.org/10.29233/sdufeffd.1139195

Abstract

Bu çalışmada yarıiletken silindirik kuantum noktanın optik özellikleri araştırılmıştır. Etkin kütle ve parabolik bant yaklaşımı dikkate alınarak yarıiletken silindirik kuantum noktanın enerji spektrumu ve dalga fonksiyonu köşegenleştirme yöntemiyle hesaplanmıştır. Elde ettiğimiz öz değer ve öz fonksiyon ifadelerini kullanarak alt enerji seviyeler arası optik geçişler için soğurma katsayısını hesaplamak için kullanılmıştır. Yarıiletken silindirik kuantum noktanın soğurma katsayısı gelen foton enerjisinin fonksiyonu olarak silindirin yarıçapı ve yüksekliği gibi parametrelerinin farklı değerlerine göre davranışı sayısal olarak araştırılmıştır. Ayrıca soğurma katsayı manyetik alanın farklı değerlerine göre değişimi araştırılmıştır. Elde edilen sonuçlara göre yarıiletken kuantum noktanın soğurma katsayısı manyetik alanın değişiminden bağımsız ve silindirin yarıçap ve yükseklik parametrelerinin değişimine bağlı olduğu görülmüştür.

References

  • J. H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, 1998, pp 427.
  • B. Dieter, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures. John Wiley and Sons, 1999, pp 325.
  • L. L. Chang and K. Ploog, Molecular Beam Epitaxy and Heterostructures. Martinus Nijhoff Publishers, 1985, pp 677.
  • C. Lamberti, Characterization of Semiconductor Heterostructures and Nanostructures. Elsevier B.V., 2008, pp 483.
  • N. G. Einspruch and W. R. Frensley, Eds., Heterostructures and Quantum Devices. Academic Press Inc., 1994 pp 446.
  • V. Mitin, V. Kochelap, and M. A. Stroscio, Quantum Heterostructures: Microelectronics and Optoelectronics. Cambridge University Press, 1999, pp 635.
  • E. Ivchenko and G. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Second. Springer-Verlag, 1997, pp 379.
  • R. F. Wallis and M. Balkanski, Semiconductor Physics and Aplications. Oxford University Press, 2000, pp 512.
  • T. C. McGill, C. M. Sotomayor Torres, and W. Gebhardt, Eds., Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors. Plenum Press, 1988, pp 344.
  • S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, 1998, pp 241.
  • D. C. Bensahel, L. T. Canham, and S. Ossicini, Eds., Optical Properties of Low Dimensional Silicon Structures. Springer, 1993, pp 235.
  • T. Ogawa and Y. Kanemitsu, Optical Properties of Low-Dimensional Materials. World Scientific, 1998, pp 468.
  • C. H. Liu and B. R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. Sect. A Gen. At. Solid State Phys., 372 (6), 888–892, 2008.
  • F. Ungan, M. K. Bahar, S. Pal, and M. E. Mora-Ramos, “Electron-related nonlinear optical properties of cylindrical quantum dot with the Rosen-Morse axial potential,” Commun. Theor. Phys., 72 (7), 2020.
  • G. Safarpour, A. Zamani, M. A. Izadi, and H. Ganjipour, “Laser radiation effect on the optical properties of a spherical quantum dot confined in a cylindrical nanowire,” J. Lumin., 147, 295–303, 2014.
  • G. Safarpour, M. A. Izadi, M. Novzari, E. Niknam, and M. Moradi, “Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire,” Phys. E Low-Dimensional Syst. Nanostructures, 59, 124–132, 2014.
  • E. Kasapoglu, C. A. Duque, M. E. Mora-Ramos, and I. Sökmen, “The effects of the intense laser field on the nonlinear optical properties of a cylindrical Ga1-xAlxAs/GaAs quantum dot under applied electric field,” Phys. B Condens. Matter, 74, 15–20, 2015.
  • R. Khordad, “Effect of magnetic field on linear and nonlinear optical properties in a parabolic cylindrical quantum dot,” J. Opt., 42 (2), 83–91, 2013.
  • F. Ungan, M. K. Bahar, M. G. Barseghyan, L. M. Pérez, and D. Laroze, “Effect of intense laser and electric fields on nonlinear optical properties of cylindrical quantum dot with Morse potential,” Optik (Stuttg)., 236 (September 2020), 2021.
  • R. E. Acosta, A. Zapata, C. A. Duque, and M. E. Mora-Ramos, “Electric field effects on excitons in cylindrical quantum dots with asymmetric axial potential. Influence on the nonlinear optical properties,” Phys. E Low-Dimensional Syst. Nanostructures, 44 (9), 1936–1944, 2012.
  • M. S. Atoyan, E. M. Kazaryan, and H. A. Sarkisyan, “Direct interband light absorption in a cylindrical quantum dot in quantizing magnetic field,” Phys. E Low-Dimensional Syst. Nanostructures, 22 (4), 860–866, 2004.
  • A. Efros, “Interband light absorption in semiconductor spheres,” Sov. physics. Semicond., 16 (7), 772–775, 1982.
  • S. Liang, W. Xie, and H. Shen, “Optical properties in a two-dimensional quantum ring: Confinement potential and Aharonov-Bohm effect,” Opt. Commun., 284, 24, 5818–5828, 2011.
  • O. Olendski and T. Barakat, “Magnetic field control of the intraband optical absorption in two-dimensional quantum rings,” J. Appl. Phys., 115, 8, 2014.
  • D. Bejan, C. Stan, and E. C. Niculescu, “Optical properties of an elliptic quantum ring: Eccentricity and electric field effects,” Opt. Mater. (Amst)., 78, 207–219, 2018.
  • A. Turkoglu, H. Dakhlaoui, M. E. Mora-Ramos, and F. Ungan, “Optical properties of a quantum well with Razavy confinement potential: Role of applied external fields,” Phys. E Low-Dimensional Syst. Nanostructures, 134 (June), p. 114919, 2021.
  • S. L. Chuang, Physics of Photonic Devices, Second. Wiley, 2009, pp 841.
  • A. Babanlı and V. Sabyrov, “Optical properties of cylindrical quantum dots with diluted magnetic semiconductors structure,” Low Temp. Phys., 48 (10), 934–940, Aug. 2022.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Arif Babanlı 0000-0003-4468-999X

Vepa Sabyrov 0000-0002-3562-3086

Publication Date November 25, 2022
Published in Issue Year 2022

Cite

IEEE A. Babanlı and V. Sabyrov, “Yarıiletken Silindirik Kuantum Noktanın Optik Özellikleri”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 543–550, 2022, doi: 10.29233/sdufeffd.1139195.