Research Article
BibTex RIS Cite

Sb+5/Mg+2 Çift İkameli In2O3 Şeffaf İletken Oksitlerin Farklı Sıcaklıklarda Katı Hal Reaksiyon Yöntemi ile Sentezi ve Karakterizasyonu

Year 2022, , 453 - 459, 25.11.2022
https://doi.org/10.29233/sdufeffd.1167319

Abstract

Modern teknolojide saydam iletken oksitler kritik bir rol oynamaktadır. En popüler saydam iletken oksitlerden biri indiyum kalay oksittir. Ancak, az bulunurluğu nedeniyle indiyum pahalı bir metaldir. Bu çalışmada, Sb+5/Mg+2 birlikte ikame edilmiş In2O3 saydam iletken oksit malzemelerin (MISO olarak adlandırılan Mg2X/3In2-XSbX/3O3) sentezlenmesi için yüksek sıcaklıkta katı hal reaksiyonları yöntemi kullanılmıştır. Bu çalışmada indiyum oranı düşürülerek ve Sb+5/Mg+2 ikame edilerek düşük maliyetli saydam iletken oksitler üretilmiş ve ikame malzeme oranının indiyum oksidin yapısal, elektriksel ve optiksel özelliklerine etkisi sırasıyla XRD, Hall ölçüm sistemi ve UV-Vis spektrometresi ile incelenmiştir. Numuneler 1250 °C ve 1350 °C sıcaklıklarda toz ve pelet olarak hazırlanmıştır. Numunelerin biksbit yapısında kristalleştiği gözlemlenmiştir. 1350 °C'de üretilen MISO örneklerinin bant boşlukları, 1250 °C'de sentezlenenlerden daha düşük bulunmuştur. Dört noktalı problarla yapılan elektriksel analizler, malzemelerin n-tipi elektrik iletkenliğine sahip olduğunu göstermiştir.

Supporting Institution

Osmaniye Korkut Ata Üniversitesi

Project Number

OKÜBAP-2019-PT3-005

References

  • J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent electronics, vol.112: Springer, 2008.
  • A. Stadler, "Transparent conducting oxides—an up-to-date overview," Materials, 5 (4), 661-683, 2012.
  • K. Rickert, "The Impact of Local Coordination Environments on Transparency and Conductivity in Select Fluorite-Related Systems," , PhD. Thesis, Dept. Chem., Northwestern University, Evanstoni USA, 2016.
  • A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, "Chemical and thin-film strategies for new transparent conducting oxides," MRS Bull, 25 (8), 45-51, 2000.
  • L. Bizo, J. Choisnet, and B. Raveau, "Coupled substitutions in In2O3: New transparent conductors In2-xM2x/3Sbx/3O3 (M = Cu, Zn)," Mater. Res. Bull., 41 (12), 2232-2237, 2006.
  • A. Freeman, K. Poeppelmeier, T. Mason, R. Chang, and T. Marks, "Chemical and thin-film strategies for new transparent conducting oxides," MRS Bull, 25 (8), 45-51, 2000.
  • T. Gao and T. Wang, "Catalytic growth of In2O3 nanobelts by vapor transport," J. Cryst. Growth, 290 (2), 660-664, 2006.
  • P. Wu, Q. Li, C. X. Zhao, D. L. Zhang, L. F. Chi, and T. Xiao, "Synthesis and photoluminescence property of indium oxide nanowires," Appl. Surf. Sci., 255 (5), 3201-3204, 2008.
  • X. Wu, H. Wang, J. Wang, J. Chen, L. Shi, B. Han, et al., "Hydrothermal synthesis of flower-like Cr2O3-doped In2O3 nanorods clusters for ultra-low isoprene detection," Colloids Surf Physicochem Eng Aspects, 620, 126606, 2021.
  • Q. Xiao, Y. Liu, L. Liu, R. Li, W. Luo, and X. Chen, "Eu3+-doped In2O3 nanophosphors: Electronic structure and optical characterization," J. Phys. Chem. C, 114 (20), 9314-9321, 2010.
  • D. D. Edwards and T. O. Mason, "Subsolidus phase relations in the Ga2O3-In2O3-SnO2 system," J. Am. Ceram. Soc., 81 (12), 3285-3292, 1998.
  • W. J. Heward and D. J. Swenson, "Phase equilibria in the pseudo-binary In2O3-SnO2 system," J. Mater. Sci., 42 (17), 7135-7140, 2007.
  • S. P. Harvey, K. R. Poeppelmeier, and T. O. Mason, "Subsolidus phase relationships in the ZnO-In2O 3-SnO2 system," J. Am. Ceram. Soc., 91 (11), 3683-3689, 2008.
  • P. Kubelka and F. Munk, "Ein beitrag zur optik der farbanstriche," Z. Tech. Phys., 12, 593-601, 1931.
  • K.-H. Seo, D.-H. Park, J.-H. Lee, and J.-J. Kim, "Co-doping effect of SnO2 and ZnO in In2O3 ceramics: Change in solubility limit and electrical properties," Solid State Ionics, 177 (5-6), 601-605, 2006.
  • J. P. Allen, J. J. Carey, A. Walsh, D. O. Scanlon, and G. W. Watson, "Electronic structures of antimony oxides," J. Phys. Chem. C, 117 (28), 14759-14769, 2013.
  • O. V. Diachenko, A. S. Opanasiuk, D. I. Kurbatov, N. M. Opanasiuk, O. Kononov, H. Cheong, et al., "Surface morphology, structural and optical properties of MgO films obtained by spray pyrolysis technique," Acta Phys. Pol. A, 130 (3), 805-810, 2016.
  • S. Heo, E. Cho, H.-I. Lee, G. S. Park, H. J. Kang, T. Nagatomi, et al., "Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy," AIP Advances, 5 (7), 077167, 2015.
  • B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, and P. Darabi, "The electronic and optical properties of MgO mono-layer: Based on GGA-mBJ," Results in Phys., 12, 2038-2043, 2019.
  • T. Mason, G. Gonzalez, D. Kammler, N. Mansourian-Hadavi, and B. Ingram, "Defect chemistry and physical properties of transparent conducting oxides in the CdO-In2O3-SnO2 system," Thin Solid Films, 411, 106-114, 2002.
  • K. Rickert, J. Harris, N. Sedefoglu, H. Kavak, D. E. Ellis, and K. R. Poeppelmeier, "Site identity and importance in cosubstituted bixbyite In2O3," Crystals, 7 (2), 47, 2017.
  • J. Choisnet, L. Bizo, R. Retoux, and B. Raveau, "Antimony and antimony–tin doped indium oxide, IAO and IATO: promising transparent conductors," Solid State Sci., 6 (10), 1121-1123, 2004.
  • J. L. Bates, C. W. Griffin, D. D. Marchant, and J. E. Garnier, "Electrical conductivity, Seebeck coefficient, and structure Of In//2O//3-SnO//2," Am. Ceram. Soc. Bull., 65 (4), 673-678, 1986.
  • G. Frank and H. Köstlin, "Electrical properties and defect model of tin-doped indium oxide layers," Appl. Phys. A, 27 (4), 197-206, 1982.

Synthesis and Characterization of Sb+5/Mg+2 Cosubstituted In2O3 Transparent Conductive Oxides by Solid State Reaction Method at Different Temperatures

Year 2022, , 453 - 459, 25.11.2022
https://doi.org/10.29233/sdufeffd.1167319

Abstract

In modern technology, transparent conductive oxides play a critical role. One of the most popular transparent conductive oxides is indium tin oxide. However, due to its scarcity, indium is a costly metal. In this study, high temperature solid state reactions method was used to synthesize Sb+5/Mg+2 cosubstituted In2O3 transparent conductive oxide materials (Mg2X/3In2-XSbX/3O3 named MISO). By decreasing the indium ratio and substituting Sb+5/Mg+2, transparent conductive oxides with low costs were produced in this work, and the influence of the proportion of substituted material on the structural, electrical, and optical properties of indium oxide was examined with XRD, Hall measurement system and UV-Vis spectrometer respectively. The samples were prepared as powder and pellet at 1250 °C and 1350 °C temperatures. It was observed that samples crystallize in bixbyite structure. The band gaps of MISO samples produced at 1350 °C were found to be lower than those synthesized at 1250 °C. Electrical analyzes with four-point probes showed that the materials have n-type electrical conductivity.

Project Number

OKÜBAP-2019-PT3-005

References

  • J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent electronics, vol.112: Springer, 2008.
  • A. Stadler, "Transparent conducting oxides—an up-to-date overview," Materials, 5 (4), 661-683, 2012.
  • K. Rickert, "The Impact of Local Coordination Environments on Transparency and Conductivity in Select Fluorite-Related Systems," , PhD. Thesis, Dept. Chem., Northwestern University, Evanstoni USA, 2016.
  • A. J. Freeman, K. R. Poeppelmeier, T. O. Mason, R. P. H. Chang, and T. J. Marks, "Chemical and thin-film strategies for new transparent conducting oxides," MRS Bull, 25 (8), 45-51, 2000.
  • L. Bizo, J. Choisnet, and B. Raveau, "Coupled substitutions in In2O3: New transparent conductors In2-xM2x/3Sbx/3O3 (M = Cu, Zn)," Mater. Res. Bull., 41 (12), 2232-2237, 2006.
  • A. Freeman, K. Poeppelmeier, T. Mason, R. Chang, and T. Marks, "Chemical and thin-film strategies for new transparent conducting oxides," MRS Bull, 25 (8), 45-51, 2000.
  • T. Gao and T. Wang, "Catalytic growth of In2O3 nanobelts by vapor transport," J. Cryst. Growth, 290 (2), 660-664, 2006.
  • P. Wu, Q. Li, C. X. Zhao, D. L. Zhang, L. F. Chi, and T. Xiao, "Synthesis and photoluminescence property of indium oxide nanowires," Appl. Surf. Sci., 255 (5), 3201-3204, 2008.
  • X. Wu, H. Wang, J. Wang, J. Chen, L. Shi, B. Han, et al., "Hydrothermal synthesis of flower-like Cr2O3-doped In2O3 nanorods clusters for ultra-low isoprene detection," Colloids Surf Physicochem Eng Aspects, 620, 126606, 2021.
  • Q. Xiao, Y. Liu, L. Liu, R. Li, W. Luo, and X. Chen, "Eu3+-doped In2O3 nanophosphors: Electronic structure and optical characterization," J. Phys. Chem. C, 114 (20), 9314-9321, 2010.
  • D. D. Edwards and T. O. Mason, "Subsolidus phase relations in the Ga2O3-In2O3-SnO2 system," J. Am. Ceram. Soc., 81 (12), 3285-3292, 1998.
  • W. J. Heward and D. J. Swenson, "Phase equilibria in the pseudo-binary In2O3-SnO2 system," J. Mater. Sci., 42 (17), 7135-7140, 2007.
  • S. P. Harvey, K. R. Poeppelmeier, and T. O. Mason, "Subsolidus phase relationships in the ZnO-In2O 3-SnO2 system," J. Am. Ceram. Soc., 91 (11), 3683-3689, 2008.
  • P. Kubelka and F. Munk, "Ein beitrag zur optik der farbanstriche," Z. Tech. Phys., 12, 593-601, 1931.
  • K.-H. Seo, D.-H. Park, J.-H. Lee, and J.-J. Kim, "Co-doping effect of SnO2 and ZnO in In2O3 ceramics: Change in solubility limit and electrical properties," Solid State Ionics, 177 (5-6), 601-605, 2006.
  • J. P. Allen, J. J. Carey, A. Walsh, D. O. Scanlon, and G. W. Watson, "Electronic structures of antimony oxides," J. Phys. Chem. C, 117 (28), 14759-14769, 2013.
  • O. V. Diachenko, A. S. Opanasiuk, D. I. Kurbatov, N. M. Opanasiuk, O. Kononov, H. Cheong, et al., "Surface morphology, structural and optical properties of MgO films obtained by spray pyrolysis technique," Acta Phys. Pol. A, 130 (3), 805-810, 2016.
  • S. Heo, E. Cho, H.-I. Lee, G. S. Park, H. J. Kang, T. Nagatomi, et al., "Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy," AIP Advances, 5 (7), 077167, 2015.
  • B. Nourozi, A. Aminian, N. Fili, Y. Zangeneh, A. Boochani, and P. Darabi, "The electronic and optical properties of MgO mono-layer: Based on GGA-mBJ," Results in Phys., 12, 2038-2043, 2019.
  • T. Mason, G. Gonzalez, D. Kammler, N. Mansourian-Hadavi, and B. Ingram, "Defect chemistry and physical properties of transparent conducting oxides in the CdO-In2O3-SnO2 system," Thin Solid Films, 411, 106-114, 2002.
  • K. Rickert, J. Harris, N. Sedefoglu, H. Kavak, D. E. Ellis, and K. R. Poeppelmeier, "Site identity and importance in cosubstituted bixbyite In2O3," Crystals, 7 (2), 47, 2017.
  • J. Choisnet, L. Bizo, R. Retoux, and B. Raveau, "Antimony and antimony–tin doped indium oxide, IAO and IATO: promising transparent conductors," Solid State Sci., 6 (10), 1121-1123, 2004.
  • J. L. Bates, C. W. Griffin, D. D. Marchant, and J. E. Garnier, "Electrical conductivity, Seebeck coefficient, and structure Of In//2O//3-SnO//2," Am. Ceram. Soc. Bull., 65 (4), 673-678, 1986.
  • G. Frank and H. Köstlin, "Electrical properties and defect model of tin-doped indium oxide layers," Appl. Phys. A, 27 (4), 197-206, 1982.
There are 24 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Nazmi Sedefoğlu 0000-0001-5364-7375

Ayşenur Şahin 0000-0002-5471-7803

Project Number OKÜBAP-2019-PT3-005
Publication Date November 25, 2022
Published in Issue Year 2022

Cite

IEEE N. Sedefoğlu and A. Şahin, “Synthesis and Characterization of Sb+5/Mg+2 Cosubstituted In2O3 Transparent Conductive Oxides by Solid State Reaction Method at Different Temperatures”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 2, pp. 453–459, 2022, doi: 10.29233/sdufeffd.1167319.