Research Article
BibTex RIS Cite

Influence of Ho Substitution on Structural, Morphological, and Optical Properties of Anatase Ti1-xHoxO2 (x= 0.0, 0.01, 0.02, 0.03) Thin Films

Year 2023, , 223 - 237, 23.11.2023
https://doi.org/10.29233/sdufeffd.1237412

Abstract

Ti1-xHoxO2 (x= 0.0, 0.01, 0.02, 0.03) thin films are synthesized by a sol-gel method and deposited by a dip-coating technique on the glass substrates. The films’ crystal structures are examined by an X-ray diffraction technique, while the morphological properties are investigated by scanning electron microscopy and atomic force microscopy. UV-Vis and photoluminescence spectrophotometry are used to analyze the optical properties. Based on the X-ray diffraction patterns, all the films belong to the anatase phase. It is observed that the surface characteristics, such as the morphology, film thickness, and roughness change significantly with the holmium substitution. The optical investigations reveal that the transmittance, band gap energies, and luminescence properties can be adjusted by the holmium substitution. According to the current study, holmium substituted TiO2 thin films with improved optical properties may be a suitable candidate for applications that require a wide band gap and high optical transparency as well as luminescence properties.

Supporting Institution

Kastamonu University Scientific Research Projects Coordination Department

Project Number

KU-BAP01/2021-05

References

  • A. M. E. Raj, V. Agnes, V. Bena Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran and C. Sanjeeviraja, ''Spray deposition and property analysis of anatase phase titania (TiO 2) nanostructures'', Thin Solid Films, 519, 129-135,2010.
  • T. C. Paul, M. H. Babu, J. Podder, B. C. Dev, S. K. Sen and S. Islam, ''Influence of Fe3+ ions doping on TiO2 thin films: Defect generation, d-d transition and band gap tuning for optoelectronic device applications'', Physica B: Condensed Matter, 604, 412618,2021.
  • T. S. Rajaraman, S. P. Parikh and V. G. Gandhi, ''Black TiO2: A review of its properties and conflicting trends'', Chemical Engineering Journal, 389, 123918,2020.
  • A. Farzaneh, M. Javidani, M.D. Esrafili and O. Mermer, ''Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations'', Journal of Physics and Chemistry of Solids, 161, 110404, 2022.
  • A. Möllmann, D. Gedamu, P. Vivo, R. Frohnhoven, D. Stadler, T. Fischer, I. Ka, M. Steinhorst, R. Nechache, F. Rosei, S.G. Cloutier, T. Kirchartz and S. Mathur, ''Highly Compact TiO 2 Films by Spray Pyrolysis and Application in Perovskite Solar Cells'', Advance Engineering Materials, 4,1801196, 2019.
  • C. Yang, H. Fan, Y. Xi, J. Chen and Z. Li, ''Effects of depositing temperatures on structure and optical properties of TiO 2 film deposited by ion beam assisted electron beam evaporation'', Applied Surface Science, 44 (15), 2996-3000, 2008.
  • D. Mardare, M. Tasca, M. Delibas and G. I. Rusu, ''On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films'', Applied Surface Science, 156 (1-4), 200-206, 2000.
  • D.S. Bhachu, R.G. Egdell, G. Sankar, C.J. Carmalt and I.P. Parkin, ''Electronic properties of antimony-doped anatase TiO2 thin films prepared by aerosol assisted chemical vapour deposition'', Journal of Materials Chemistry C, 5 (37), 9694-9701, 2017.
  • J .C. Orlianges, A. Crunteanu, A. Pothier, T. Merle-Mejean, P. Blondy and C. Champeaux, ''Titanium dioxide thin films deposited by pulsed laser deposition and integration in radio frequency devices: Study of structure, optical and dielectric properties'', Applied Surface Science, 263, 111-114,2012.
  • S. Obregón and V. Rodríguez-González, ''Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review'', Journal of Sol-Gel Science and Technology, 102,125-141, 2021.
  • Z. Lu, X. Jiang, B. Zhou, X. Wu and L. Lu, ''Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO 2 thin films deposited by electron beam evaporation'', Applied Surface Science, 257 (24), 10715-10720, 2011.
  • S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. R. Bhatia, P. K. Mishra, V. Manjuladevi, R. K. Gupta and J. Akhtar, ''Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO 2 ) thin films'', Applied Surface Science, 264, 737-742, 2013.
  • Y. Lv, H. Tong, W. Cai, Z. Zhang, H. Chen, X. Zhou, ''Boosting the efficiency of commercial available carbon-based perovskite solar cells using Zinc-doped TiO2 nanorod arrays as electron transport layer'', Journal of Alloys and Compounds, 851, 156785, 2021.
  • H. N. T. Phung, N. D. Truong, L. T. Nguyen, K. L. P. Thi, P. A. Duong and V.T.H. Le, ''Enhancement of the visible light photocatalytic activity of vanadium and nitrogen co-doped TiO2 thin film'', Journal of Nonlinear Optical Physics & Materials, 24 (4), 1550052, 2015.
  • M. H. Chan, W. Y. Ho, D. Y. Wang and F. H. Lu, ''Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition'', Surface Coatings Technology, 202 (4-7), 962–966, 2007.
  • D. Komaraiah, E. Radha, J. Sivakumar, M. V. Ramana Reddy and R. Sayanna, ''Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films'', Optical Materials, 108, 110401, 2020.
  • B. Singaram, J. Jeyaram, R. Rajendran, P. Arumugam and K. Varadharajan, ''Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation'', Ionics, 25 (2), 773–784, 2019.
  • K. Kukli, M. Kemell, M. C. Dimri, E. Puukilainen, A. Tamm, R. Stern, M. Ritala and M. Leskelä, ''Holmium titanium oxide thin films grown by atomic layer deposition'', Thin Solid Films, 565, 261–266, 2014.
  • J. wen Shi, J. tang Zheng and P. Wu, ''Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles'', Journal of Hazardous Materials, 161(1), 416–422, 2009.
  • J. Shi, J. Zheng, Y. Hu and Y. Zhao, ''Photocatalytic degradation of organic compounds in aqueous systems by Fe and Ho codoped TiO2'', Kinetics and Catalysis, 49, 279–284, 2008.
  • F. Peng and D. Zhu, ''Effect of sintering temperature and Ho2O3 on the properties of TiO2-based varistors'', Ceramics International, 44, 21034–21039, 2018.
  • T. M. Pan, M. De Huang, C. W. Lin and M. H. Wu, ''Development of high-κ HoTiO3 sensing membrane for pH detection and glucose biosensing'', Sensors & Actuators, B: Chemical, 144, 139–145, 2010.
  • L. Macalik, M. Maczka, P. Solarz, A. F. Fuentes, K. Matsuhira and Z. Hiroi, ''Optical spectroscopy of the geometrically frustrated pyrochlore Ho2Ti2O7'', Optical Materials, 31, 6, 790–794, 2009.
  • G. Li, K. Fang, Y. Ou, W. Yuan, H. Yang, Z. Zhang and Y. Wang, ''Surface study of the reconstructed anatase TiO2 (001) surface'', Progress in Natural Science, 31,1, 2021.
  • D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M. V. Ramana Reddy and R. Sayanna, ''Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts'', Ceramics International, 45, 25060–25068, 2019.
  • Y. Doubi, B. Hartiti, L. Hicham, S. Fadili, A. Batan, M. Tahri, A. Belfhaili and P. Thevnin, ''Effect of annealing time on structural and optical proprieties of TiO2 thin films elaborated by spray pyrolysis technique for future gas sensor application'', Materials Today: Proceedings, 3 (4), 823–827, 2020.
  • A. M. Bolbol, O. H. Abd-Elkader, H. Elshimy, Z. I. Zaki, S. A. Shata, M. Kamel, A. S. Radwan and N.Y. Mostafa, ''The effect of Zr (IV) doping on TiO2 thin film structure and optical characteristics'', Results in Physics, 42, 2022.
  • D. Nath, F. Singh and R. Das, ''X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study'', Materials Chemistry and Physics, 239 (1), 2020.
  • G. Demircan, E. F. Gurses, B. Aktas, S. Yalcin, A. Acikgoz, G. Ceyhan and M. V. Balak, ''Sol–gel synthesis of Si-ZnO, Ti-ZnO and Si-Ti-ZnO thin films: Impact of Si and Ti content on structural and optical properties'', Materials Today Communications, 34, 105234, 2023.
  • A. K. Deb and P. Chatterjee, ''Microstrain and lattice disorder in nanocrystalline titanium dioxide prepared by chemical route and its relation with phase transformation'', Journal of Theoretical and Applied Physics,14, 285–293, 2020.
  • D. Sudha, S. Dhanapandian, C. Manoharan, A. Arunachalam, ''Structural, morphological and electrical properties of pulsed electrodeposited CdIn2Se4 thin films'', Results in Physics, 6, 599–605, 2016.
  • S. M. AL-Shomar, ''Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application'', Materials Research Express, 8(2), 2021.
  • E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, ''Roughness parameters'', Journal of Materials Processing Technology, 123 (1), 133-145, 2002.
  • Z. Sun, V. F. Pichugin, K. E. Evdokimov, M. E. Konishchev, M. S. Syrtanov, V. N. Kudiiarov, K. Li and S. I. Tverdokhlebov, ''Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film'', Applied Surface Science, 500, 144048, 2020.
  • M. Sreemany and S. Sen, ''Influence of calcination ambient and film thickness on the optical and structural properties of sol-gel TiO2 thin films'', Materials Research Bulletin, 42(1), 177-189, 2007.
  • D.Y . Lee, J.T. Kim, J. H. Park, Y. H. Kim, I. K. Lee, M. H. Lee, and B. Y. Kim, ''Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating'', Current Applied Physics, 13(7),1301-1305, 2013.
  • T.S. Senthil and M. Kang, ''Transparent thin film dye sensitized solar cells prepared by sol-gel method'', Bulletin of the Korean Chemical Society, 34(4), 1188-1194, 2013.
  • A. Nakaruk, C. Y. Lin, D. S. Perera and C. C. Sorrell, ''Effect of annealing temperature on titania thin films prepared by spin coating'', Journal of Sol-Gel Science and Technology, 55, 328–334, 2010.
  • T. M. Wang, S. K. Zheng, W. C. Hao and C. Wang, ''Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method'', Surface and Coatings Technology, 155, (2-3),141–145, 2002.
  • M. Sreemany and S. Sen, ''A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films'', Materials Chemistry and Physics, 83,169-177, 2004.
  • P. Hervé, L. K. J. Vandamme, ''General relation between refractive index and energy gap in semiconductors'', Infrared Physics & Technology, 35 (4), 609–615, 1994.
  • S. K. Tripathy, ''Refractive indices of semiconductors from energy gaps'', Optical Materials, 46, 240–246, 2015.
  • A. Chanda, S. R. Joshi, V. R. Akshay, S. Varma, J. Singh, M. Vasundhara and P. Shukla, ''Structural and optical properties of multilayered un-doped and cobalt doped TiO2 thin films'', Applied Surface Science, 536, 147830 2021.
  • S. M. Al-Shomar, ''Investigation the effect of doping concentration in Ruthenium-doped TiO2 thin films for solar cells and sensors applications'', Materials Research Express, 7, 036409, 2020.
  • B. Houng, C. C. Liu and M. T. Hung, ''Structural, electrical and optical properties of molybdenum-doped TiO2 thin films'', Ceramics International, 39 (4), 3669–367639, 2013.
  • M. Subramanian, S. Vijayalakshmi, S. Venkataraj and R. Jayavel, ''Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process'', Thin Solid Films, 516, 3776–3782, 2008.
  • C. J. Brinker, G. C. Frye, A. J. Hurd and C. S. Ashley, ''Fundamentals of sol-gel dip coating'', Thin Solid Films''. 201, 97–108, 1991.
  • P.B. Nair, V. B. Justinvictor, G. P. Daniel, K. Joy, V. Ramakrishnan, D. D. Kumar, and P. V. Thomas, ''Structural, optical, photoluminescence and photocatalytic investigations on Fe doped Tio2 thin films'', Thin Solid Films, 2014.
  • M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, and M. Umeno, ''Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films'', Journal of Physics and Chemistry of Solids, 60 (2), 201-210, 1999.
  • J. Yu, H. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. Ho, ''Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films'', Thin Solid Films, 496 (2), 273-280, 2006.
  • F. B. Li and X. Z. Li, ''Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment'', Applied Catalysis A: General, 228 (1-2), 15-27, 2002.
Year 2023, , 223 - 237, 23.11.2023
https://doi.org/10.29233/sdufeffd.1237412

Abstract

Project Number

KU-BAP01/2021-05

References

  • A. M. E. Raj, V. Agnes, V. Bena Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran and C. Sanjeeviraja, ''Spray deposition and property analysis of anatase phase titania (TiO 2) nanostructures'', Thin Solid Films, 519, 129-135,2010.
  • T. C. Paul, M. H. Babu, J. Podder, B. C. Dev, S. K. Sen and S. Islam, ''Influence of Fe3+ ions doping on TiO2 thin films: Defect generation, d-d transition and band gap tuning for optoelectronic device applications'', Physica B: Condensed Matter, 604, 412618,2021.
  • T. S. Rajaraman, S. P. Parikh and V. G. Gandhi, ''Black TiO2: A review of its properties and conflicting trends'', Chemical Engineering Journal, 389, 123918,2020.
  • A. Farzaneh, M. Javidani, M.D. Esrafili and O. Mermer, ''Optical and photocatalytic characteristics of Al and Cu doped TiO2: Experimental assessments and DFT calculations'', Journal of Physics and Chemistry of Solids, 161, 110404, 2022.
  • A. Möllmann, D. Gedamu, P. Vivo, R. Frohnhoven, D. Stadler, T. Fischer, I. Ka, M. Steinhorst, R. Nechache, F. Rosei, S.G. Cloutier, T. Kirchartz and S. Mathur, ''Highly Compact TiO 2 Films by Spray Pyrolysis and Application in Perovskite Solar Cells'', Advance Engineering Materials, 4,1801196, 2019.
  • C. Yang, H. Fan, Y. Xi, J. Chen and Z. Li, ''Effects of depositing temperatures on structure and optical properties of TiO 2 film deposited by ion beam assisted electron beam evaporation'', Applied Surface Science, 44 (15), 2996-3000, 2008.
  • D. Mardare, M. Tasca, M. Delibas and G. I. Rusu, ''On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films'', Applied Surface Science, 156 (1-4), 200-206, 2000.
  • D.S. Bhachu, R.G. Egdell, G. Sankar, C.J. Carmalt and I.P. Parkin, ''Electronic properties of antimony-doped anatase TiO2 thin films prepared by aerosol assisted chemical vapour deposition'', Journal of Materials Chemistry C, 5 (37), 9694-9701, 2017.
  • J .C. Orlianges, A. Crunteanu, A. Pothier, T. Merle-Mejean, P. Blondy and C. Champeaux, ''Titanium dioxide thin films deposited by pulsed laser deposition and integration in radio frequency devices: Study of structure, optical and dielectric properties'', Applied Surface Science, 263, 111-114,2012.
  • S. Obregón and V. Rodríguez-González, ''Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review'', Journal of Sol-Gel Science and Technology, 102,125-141, 2021.
  • Z. Lu, X. Jiang, B. Zhou, X. Wu and L. Lu, ''Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO 2 thin films deposited by electron beam evaporation'', Applied Surface Science, 257 (24), 10715-10720, 2011.
  • S. K. Gupta, J. Singh, K. Anbalagan, P. Kothari, R. R. Bhatia, P. K. Mishra, V. Manjuladevi, R. K. Gupta and J. Akhtar, ''Synthesis, phase to phase deposition and characterization of rutile nanocrystalline titanium dioxide (TiO 2 ) thin films'', Applied Surface Science, 264, 737-742, 2013.
  • Y. Lv, H. Tong, W. Cai, Z. Zhang, H. Chen, X. Zhou, ''Boosting the efficiency of commercial available carbon-based perovskite solar cells using Zinc-doped TiO2 nanorod arrays as electron transport layer'', Journal of Alloys and Compounds, 851, 156785, 2021.
  • H. N. T. Phung, N. D. Truong, L. T. Nguyen, K. L. P. Thi, P. A. Duong and V.T.H. Le, ''Enhancement of the visible light photocatalytic activity of vanadium and nitrogen co-doped TiO2 thin film'', Journal of Nonlinear Optical Physics & Materials, 24 (4), 1550052, 2015.
  • M. H. Chan, W. Y. Ho, D. Y. Wang and F. H. Lu, ''Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition'', Surface Coatings Technology, 202 (4-7), 962–966, 2007.
  • D. Komaraiah, E. Radha, J. Sivakumar, M. V. Ramana Reddy and R. Sayanna, ''Photoluminescence and photocatalytic activity of spin coated Ag+ doped anatase TiO2 thin films'', Optical Materials, 108, 110401, 2020.
  • B. Singaram, J. Jeyaram, R. Rajendran, P. Arumugam and K. Varadharajan, ''Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation'', Ionics, 25 (2), 773–784, 2019.
  • K. Kukli, M. Kemell, M. C. Dimri, E. Puukilainen, A. Tamm, R. Stern, M. Ritala and M. Leskelä, ''Holmium titanium oxide thin films grown by atomic layer deposition'', Thin Solid Films, 565, 261–266, 2014.
  • J. wen Shi, J. tang Zheng and P. Wu, ''Preparation, characterization and photocatalytic activities of holmium-doped titanium dioxide nanoparticles'', Journal of Hazardous Materials, 161(1), 416–422, 2009.
  • J. Shi, J. Zheng, Y. Hu and Y. Zhao, ''Photocatalytic degradation of organic compounds in aqueous systems by Fe and Ho codoped TiO2'', Kinetics and Catalysis, 49, 279–284, 2008.
  • F. Peng and D. Zhu, ''Effect of sintering temperature and Ho2O3 on the properties of TiO2-based varistors'', Ceramics International, 44, 21034–21039, 2018.
  • T. M. Pan, M. De Huang, C. W. Lin and M. H. Wu, ''Development of high-κ HoTiO3 sensing membrane for pH detection and glucose biosensing'', Sensors & Actuators, B: Chemical, 144, 139–145, 2010.
  • L. Macalik, M. Maczka, P. Solarz, A. F. Fuentes, K. Matsuhira and Z. Hiroi, ''Optical spectroscopy of the geometrically frustrated pyrochlore Ho2Ti2O7'', Optical Materials, 31, 6, 790–794, 2009.
  • G. Li, K. Fang, Y. Ou, W. Yuan, H. Yang, Z. Zhang and Y. Wang, ''Surface study of the reconstructed anatase TiO2 (001) surface'', Progress in Natural Science, 31,1, 2021.
  • D. Komaraiah, E. Radha, N. Kalarikkal, J. Sivakumar, M. V. Ramana Reddy and R. Sayanna, ''Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts'', Ceramics International, 45, 25060–25068, 2019.
  • Y. Doubi, B. Hartiti, L. Hicham, S. Fadili, A. Batan, M. Tahri, A. Belfhaili and P. Thevnin, ''Effect of annealing time on structural and optical proprieties of TiO2 thin films elaborated by spray pyrolysis technique for future gas sensor application'', Materials Today: Proceedings, 3 (4), 823–827, 2020.
  • A. M. Bolbol, O. H. Abd-Elkader, H. Elshimy, Z. I. Zaki, S. A. Shata, M. Kamel, A. S. Radwan and N.Y. Mostafa, ''The effect of Zr (IV) doping on TiO2 thin film structure and optical characteristics'', Results in Physics, 42, 2022.
  • D. Nath, F. Singh and R. Das, ''X-ray diffraction analysis by Williamson-Hall, Halder-Wagner and size-strain plot methods of CdSe nanoparticles- a comparative study'', Materials Chemistry and Physics, 239 (1), 2020.
  • G. Demircan, E. F. Gurses, B. Aktas, S. Yalcin, A. Acikgoz, G. Ceyhan and M. V. Balak, ''Sol–gel synthesis of Si-ZnO, Ti-ZnO and Si-Ti-ZnO thin films: Impact of Si and Ti content on structural and optical properties'', Materials Today Communications, 34, 105234, 2023.
  • A. K. Deb and P. Chatterjee, ''Microstrain and lattice disorder in nanocrystalline titanium dioxide prepared by chemical route and its relation with phase transformation'', Journal of Theoretical and Applied Physics,14, 285–293, 2020.
  • D. Sudha, S. Dhanapandian, C. Manoharan, A. Arunachalam, ''Structural, morphological and electrical properties of pulsed electrodeposited CdIn2Se4 thin films'', Results in Physics, 6, 599–605, 2016.
  • S. M. AL-Shomar, ''Synthesis and characterization of Eu3+ doped TiO2 thin films deposited by spray pyrolysis technique for photocatalytic application'', Materials Research Express, 8(2), 2021.
  • E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, ''Roughness parameters'', Journal of Materials Processing Technology, 123 (1), 133-145, 2002.
  • Z. Sun, V. F. Pichugin, K. E. Evdokimov, M. E. Konishchev, M. S. Syrtanov, V. N. Kudiiarov, K. Li and S. I. Tverdokhlebov, ''Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO2 thin film'', Applied Surface Science, 500, 144048, 2020.
  • M. Sreemany and S. Sen, ''Influence of calcination ambient and film thickness on the optical and structural properties of sol-gel TiO2 thin films'', Materials Research Bulletin, 42(1), 177-189, 2007.
  • D.Y . Lee, J.T. Kim, J. H. Park, Y. H. Kim, I. K. Lee, M. H. Lee, and B. Y. Kim, ''Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating'', Current Applied Physics, 13(7),1301-1305, 2013.
  • T.S. Senthil and M. Kang, ''Transparent thin film dye sensitized solar cells prepared by sol-gel method'', Bulletin of the Korean Chemical Society, 34(4), 1188-1194, 2013.
  • A. Nakaruk, C. Y. Lin, D. S. Perera and C. C. Sorrell, ''Effect of annealing temperature on titania thin films prepared by spin coating'', Journal of Sol-Gel Science and Technology, 55, 328–334, 2010.
  • T. M. Wang, S. K. Zheng, W. C. Hao and C. Wang, ''Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. magnetron sputtering method'', Surface and Coatings Technology, 155, (2-3),141–145, 2002.
  • M. Sreemany and S. Sen, ''A simple spectrophotometric method for determination of the optical constants and band gap energy of multiple layer TiO2 thin films'', Materials Chemistry and Physics, 83,169-177, 2004.
  • P. Hervé, L. K. J. Vandamme, ''General relation between refractive index and energy gap in semiconductors'', Infrared Physics & Technology, 35 (4), 609–615, 1994.
  • S. K. Tripathy, ''Refractive indices of semiconductors from energy gaps'', Optical Materials, 46, 240–246, 2015.
  • A. Chanda, S. R. Joshi, V. R. Akshay, S. Varma, J. Singh, M. Vasundhara and P. Shukla, ''Structural and optical properties of multilayered un-doped and cobalt doped TiO2 thin films'', Applied Surface Science, 536, 147830 2021.
  • S. M. Al-Shomar, ''Investigation the effect of doping concentration in Ruthenium-doped TiO2 thin films for solar cells and sensors applications'', Materials Research Express, 7, 036409, 2020.
  • B. Houng, C. C. Liu and M. T. Hung, ''Structural, electrical and optical properties of molybdenum-doped TiO2 thin films'', Ceramics International, 39 (4), 3669–367639, 2013.
  • M. Subramanian, S. Vijayalakshmi, S. Venkataraj and R. Jayavel, ''Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process'', Thin Solid Films, 516, 3776–3782, 2008.
  • C. J. Brinker, G. C. Frye, A. J. Hurd and C. S. Ashley, ''Fundamentals of sol-gel dip coating'', Thin Solid Films''. 201, 97–108, 1991.
  • P.B. Nair, V. B. Justinvictor, G. P. Daniel, K. Joy, V. Ramakrishnan, D. D. Kumar, and P. V. Thomas, ''Structural, optical, photoluminescence and photocatalytic investigations on Fe doped Tio2 thin films'', Thin Solid Films, 2014.
  • M. M. Rahman, K. M. Krishna, T. Soga, T. Jimbo, and M. Umeno, ''Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films'', Journal of Physics and Chemistry of Solids, 60 (2), 201-210, 1999.
  • J. Yu, H. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. Ho, ''Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films'', Thin Solid Films, 496 (2), 273-280, 2006.
  • F. B. Li and X. Z. Li, ''Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment'', Applied Catalysis A: General, 228 (1-2), 15-27, 2002.
There are 51 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics
Journal Section Makaleler
Authors

Şeydanur Kaya 0000-0002-6894-9082

Project Number KU-BAP01/2021-05
Publication Date November 23, 2023
Published in Issue Year 2023

Cite

IEEE Ş. Kaya, “Influence of Ho Substitution on Structural, Morphological, and Optical Properties of Anatase Ti1-xHoxO2 (x= 0.0, 0.01, 0.02, 0.03) Thin Films”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 18, no. 3, pp. 223–237, 2023, doi: 10.29233/sdufeffd.1237412.