Research Article
BibTex RIS Cite

Moduli Space for Invariant Solutions of Seiberg-Witten Equations

Year 2024, , 8 - 17, 27.05.2024
https://doi.org/10.29233/sdufeffd.1407647

Abstract

In this work we study the G-invariant solutions of the Seiberg-Witten equations when G is a cyclic group acting on a manifold M, preserving the metric and the orientation. G is assumed to have a lift to principle 〖Spin〗^c bundle which gives rise to Seiberg-Witten equations in question. In this work, we prove that when the dimension b_+^G of the G-fixed points of harmonic two forms is positive, for a generic choice of an element in this fixed point set, the moduli space of invariant solutions of Seiberg-Witten equations is a compact, smooth and oriented manifold of dimension d^G=ind D_A^G-b_+^G-1.

Ethical Statement

As the author of this study, I declare that I do not have any ethics committee approval and/or informed consent statement.

References

  • J. H. C. Whitehead, “On simply-connected 4-dimensional polyhedral”,Comment. Math.Helv., 22:48–92, 1949.
  • S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press- Oxford, 1990.
  • M.Freedman, “The topology of four dimensional manifolds”, J. Diff. Geo., 17:357–454, 1982.
  • J.W. Milnor and D. Husemoller, “Symmetric Bilinear Forms”, Ergebnisse der Mathematik und ihrer Grezgebiete, Volume 73. Springer Verlag, New York-Heidelberg-Berlin, 1973.
  • John D. Moore, Lectures on Seiberg-Witten Invariants. Springer Verlag, 1996.
  • Ted Petrie and John Randall. Connections,Definite Forms, and Four-Manifolds. Clarendon Press Oxford, 1990.
  • John W. Morgan. The Seiberg-Witten Equations and Application to the Topology of Smooth four-Manifolds. Princeton University Press, 1996.
  • Daniel S. Freed, Karen K. Uhlenbeck Instantons and 4-Manifolds. Springer-Verlag, 1984.
Year 2024, , 8 - 17, 27.05.2024
https://doi.org/10.29233/sdufeffd.1407647

Abstract

References

  • J. H. C. Whitehead, “On simply-connected 4-dimensional polyhedral”,Comment. Math.Helv., 22:48–92, 1949.
  • S.K. Donaldson and P.B. Kronheimer, The Geometry of Four-Manifolds, Clarendon Press- Oxford, 1990.
  • M.Freedman, “The topology of four dimensional manifolds”, J. Diff. Geo., 17:357–454, 1982.
  • J.W. Milnor and D. Husemoller, “Symmetric Bilinear Forms”, Ergebnisse der Mathematik und ihrer Grezgebiete, Volume 73. Springer Verlag, New York-Heidelberg-Berlin, 1973.
  • John D. Moore, Lectures on Seiberg-Witten Invariants. Springer Verlag, 1996.
  • Ted Petrie and John Randall. Connections,Definite Forms, and Four-Manifolds. Clarendon Press Oxford, 1990.
  • John W. Morgan. The Seiberg-Witten Equations and Application to the Topology of Smooth four-Manifolds. Princeton University Press, 1996.
  • Daniel S. Freed, Karen K. Uhlenbeck Instantons and 4-Manifolds. Springer-Verlag, 1984.
There are 8 citations in total.

Details

Primary Language English
Subjects Topology
Journal Section Makaleler
Authors

Muhiddin Uğuz 0000-0003-2344-503X

Publication Date May 27, 2024
Submission Date December 20, 2023
Acceptance Date February 1, 2024
Published in Issue Year 2024

Cite

IEEE M. Uğuz, “Moduli Space for Invariant Solutions of Seiberg-Witten Equations”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 19, no. 1, pp. 8–17, 2024, doi: 10.29233/sdufeffd.1407647.