Research Article
BibTex RIS Cite

Synergetic Li-ion Storage Effects of Nanostructured V2O5–Modified Silicon Thin Film Anodes

Year 2025, Volume: 20 Issue: 2, 143 - 159, 26.11.2025

Abstract

In this study, a nanostructured vanadium pentoxide (V₂O₅)-modified silicon (Si) thin film anode was successfully fabricated using radio frequency (RF) magnetron sputtering to enhance the electrochemical performance of Si-based thin film anodes for lithium-ion batteries (LIBs). Structural and morphological characterization confirmed the successful deposition of V2O5 interlayer modified Si thin film architecture with improved surface roughness and compositional uniformity. Electrochemical analyses revealed a synergistic effect between the high-capacity Si and the pseudocapacitive behavior of V₂O₅. Cyclic voltammetry (CV) and kinetic studies demonstrated a mixed charge storage mechanism, with both diffusion-controlled and capacitive contributions. The modified Si thin film anode delivered initial discharge capacity of ~2013 mAh/g, followed by a stable reversible capacity of 367 mAh/g over 180 cycles. These results suggest that V₂O₅ interlayer engineering offers a promising strategy to overcome the limitations of Si anodes and advance high-performance LIB systems.

References

  • K. Kumar and R. Kundu, “Enlightenment of the underestimated parameters for a fast-charging energy-dense anode for lithium-ion batteries: an outlook”, Energy and Fuels, 2025.
  • Y. Tzeng, Y.Y. Chiou, A.A. and Wilendra, “Nickel stabilized Si/Ni/Si/Ni multi-layer thin-film anode for long-cycling-life lithium-ion battery”, Batteries, 11, 2025.
  • N. Li, F. Xiang and A. Fratalocchi, “Silicon-based photocatalysis for green chemical fuels and carbon negative technologies”, Adv Sustain Syst, 5, 2021.
  • C.Y. Jhan, P. Sen Wang, S.H. Sung and Y. Tzeng, “Effects of volume-confinement on lithium-ion battery with silicon-based anode”, Mater Today Commun, 39, 2024.
  • Y. Tzeng, C.Y. Jhan, S.H. Sung and Y.Y. Chiou, “Effects of crystalline diamond nanoparticles on silicon thin films as an anode for a lithium-ion battery”, Batteries, 10, 2024.
  • V.A. Sethuraman, K. Kowolik and V. Srinivasan, “Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries”, J Power Sources, 196, 2011.
  • M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang and S. Guan, “Graphene/carbon-coated si nanoparticle hybrids as high-performance anode materials for li-ion batteries”, ACS Appl Mater Interfaces, 5, 2013.
  • F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang and L. Chen, “Review—Nano-silicon/carbon composite anode materials towards practical application for next generation li-ion batteries”, J Electrochem Soc, 162, 2015.
  • W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li and J. Yang, “Surface and interface engineering of silicon-based anode materials for lithium-ion batteries”, Adv Energy Mater, 7, 2017.
  • G. Elomari, H. Larhlimi, R. Oubaki, E. Elmaataouy, M. Aqil, Y. Samih, M. Makha, C. Negrila, J. Alami, and M. Dahbi, “Fast charging and high-efficiency sputter-deposited silicon thin film anodes for Li-ion batteries”, J Power Sources, 64, 2025.
  • V.A. Sethuraman, V. Srinivasan, A.F. Bower and P.R. Guduru, “In situ measurements of stress-potential coupling in lithiated silicon”, J Electrochem Soc, 157, 2010.
  • N. Kumagai, S. Komaba, O. Nakano, M. Baba, H. Groult and D. Devilliers, “Characterization of R.F. Magnetron sputtered vanadium oxide thin films and intercalation of lithium in the oxide films”, Electrochemistry, 72, 2004.
  • G. El Omari, K. El Kindoussy, M. Aqil, M. Dahbi, J. Alami and M. Makha, “Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries”, Heliyon, 10, 2024.
  • X.D. Huang, X.F. Gan, F. Zhang, Q.A. Huang and J.Z. Yang, “Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode”, Electrochim Acta, 268, 2018.
  • Y. Xiong, H. Zhang, Y. Qian, Y. Wu, Z. Fu, P. Guo, H. Jiang, J. Li, Y. xiang Wang, S. Yu and H. Zhu, “Amorphous MnO2 modulates the electrochemical performance of Si@AMOA lithium-ion battery anode materials”, J Energy Storage, 108, 2025.
  • J. Li, L. Baggetto, S.K. Martha, G.M. Veith, J. Nanda, C. Liang and N.J. Dudney, “An artificial solid electrolyte interphase enables the use of a LiNi 0.5Mn1.5O4 5 v cathode with conventional electrolytes”, Adv Energy Mater, 3, 1275–1278, 2013.
  • H.-B. Jin, Z.-H. Zhang, and H.-B. Li, “Synergically enhancing lithium-ion storage performance of silicon anode by designing shelled structure with reduced graphene oxide and ZrO 2”, Rare Metals, 2025.
  • X. Chen, B. Wang, Y. Ye, J. Liang, and J. Kong, “Design of electrodes and electrolytes for silicon-based anode lithium-ion batteries”, Energy and Environmental Materials, 2024.
  • J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H.K. Liu, S.X. Dou and D. Zhao, “Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage”, Advanced Materials, 29, 2017.
  • Y. He, X. Yu, Y. Wang, H. Li and X. Huang, “Alumina-coated patterned amorphous silicon as the anode for a Lithium-Ion battery with high Coulombic efficiency”, Advanced Materials, 23, 2011.
  • X. Bi, C. Fan, Y. Rao, R. Bai, Z. Wang, C. Li and F. Kong, “Redox process and lithiation mechanism of amorphous vanadium-silicon materials as lithium-ion battery anode”, Mater Today Commun, 39, 2024.
  • A. Garzon-Roman, C.M. Díaz-Barba, D.H. Cuate-Gomez, E. Sanchez-Mora, M.E. de Anda-Reyes, A. Romero-López, C. Zúñiga-Islas and W. Calleja-Arriaga, “Fabrication of V2O5/porous silicon heterostructures by simple and low-cost methods, morphological, structural, optical, and electrical characterization, and their first application as photodetectors”, Sens Actuators A Phys, 387, 2025.
  • B. Yan, X. Li, X. Fu, L. Zhang, Z. Bai and X. Yang, “An elaborate insight of lithiation behavior of V2O5 anode”, Nano Energy, 78, 2020.
  • Y. Zhang, Y. Wang, Z. Xiong, Y. Hu, W. Song, Q.A. Huang, X. Cheng, L.Q. Chen, C. Sun and H. Gu, “V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode”, ACS Omega, 2, 2017.
  • N. González, T. García, C. Morant and R. Barrio, “Fine-tuning ıntrinsic and doped hydrogenated amorphous silicon thin-film anodes deposited by PECVD to enhance capacity and stability in lithium-ion batteries”, Nanomaterials, 14, 2024.
  • E.C. Cengiz, J. Rizell, M. Sadd, A. Matic and N. Mozhzhukhina, “Review—Reference electrodes in Li-ion and next generation batteries: Correct potential assessment, applications and practices, J Electrochem Soc, 168, 2021.
  • S. Casino, T. Beuse, V. Küpers, M. Börner, T. Gallasch, M. Winter and P. Niehoff, “Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells”, J Energy Storage, 41, 2021.
  • J. Wang, S. Li, Y. Zhao, J. Shi, L. Lv, H. Wang, Z. Zhang and W. Feng, “The influence of different Si:C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries”, RSC Adv, 8, 6660–6666, 2018.
  • V.A. Sethuraman, “Capacity fade due to side-reactions in silicon anodes in lithium-ion batteries”, n.d.
  • E. Eren, G.Y. Karaca, U. Koc, L. Oksuz and A.U. Oksuz, “Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates”, Thin Solid Films, 634, 40-50, 2017.
  • S. Lafane, S. Abdelli-Messaci, M. Kechouane, S. Malek, B. Guedouar, J. Lappalainen, O. Nemraoui and T. Kerdja, “Direct growth of VO2 nanoplatelets on glass and silicon by pulsed laser deposition through substrate temperature control”, Thin Solid Films, 632, 2017.
  • Y. Wu, S. Fang, W. Ju and Y. Jiang, “Improving the electrochemical properties of carbon anodes in lithium secondary batteries”, J Power Sources, 70, 1998.
  • M.S.I. Khan, S.W. Oh and Y.J. Kim, “Power of scanning electron microscopy and energy dispersive x-ray analysis in rapid microbial detection and identification at the single cell level, Sci Rep, 10, 2020.
  • M.N. Obrovac, and V.L. Chevrier, “Alloy negative electrodes for Li-ion batteries”, Chem Rev, 114, 2014.
  • V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, and P.R. Guduru, “In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation”, J Power Sources, 195, 2010.
  • S.P.V. Nadimpalli, V.A. Sethuraman, S. Dalavi, B. Lucht, M.J. Chon, V.B. Shenoy and P.R. Guduru, “Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries”, J Power Sources, 215, 2012.
  • W. Bao, C. Fang, D. Cheng, Y. Zhang, B. Lu, D.H.S. Tan, R. Shimizu, B. Sreenarayanan, S. Bai, W. Li, M. Zhang and Y.S. Meng, “Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography”, Cell Rep Phys Sci, 2, 2021.
  • J.C. Woodard, W.P. Kalisvaart, S.Y. Sayed, B.C. Olsen, and J.M. Buriak, “Beyond thin films: Clarifying the impact of c-Li15Si4 formation in thin film, nanoparticle, and porous Si electrodes”, ACS Appl Mater Interfaces, 13, 2021.
  • Y. Yue and H. Liang, “Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries”, Adv Energy Mater, 7, 2017.
  • E. Feyzi, A.K. M R, X. Li, S. Deng, J. Nanda and K. Zaghib, “A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives”, Next Energy, 5, 2024.
  • C.Y. Jhan, S.H. Sung and Y. Tzeng, “Silicon–nanodiamond-based anode for a lithium-ion battery”, Nanomaterials, 14, 2024.
  • H. Ji, Z. Liu, X. Li, J. Li, Z. Yan and K. Tang, “Recycling silicon waste from the photovoltaic industry to prepare yolk–shell Si@void@C anode materials for lithium–ion batteries”, Processes, 11, 2023.
  • G. Liu, X. Zhu, X. Li, D. Jia, D. Li, Z. Ma and J. Li, “Flexible porous silicon/carbon fiber anode for high−performance lithium−ion batteries”, Materials, 15, 2022.
  • G. Carbonari, F. Maroni, A. Birrozzi, R. Tossici, F. Croce and F. Nobili, “Synthesis and characterization of Si nanoparticles wrapped by V2O5 nanosheets as a composite anode material for lithium-ion batteries”, Electrochim Acta, 281, 676–683, 2018.
  • V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, and B. Dunn, “High-rate electrochemical energy storage through Li + intercalation pseudocapacitance”, Nat Mater, 12, 518–522, 2013.
  • A.I. Oje, A.A. Ogwu, M. Mirzaeian, N. Tsendzughul and A.M. Oje, “Pseudo-capacitance of silver oxide thin film electrodes in ionic liquid for electrochemical energy applications”, Journal of Science: Advanced Materials and Devices, 4, 2019.
  • Y. Liu, S.P. Jiang and Z. Shao, “Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development”, Mater Today Adv, 7, 2020.
  • T. Peng, W. Guo, Y. Zhang, Y. Wang, K. Zhu, Y. Guo, Y. Wang, Y. Lu and H. Yan, “The core-shell heterostructure CNT@Li2FeSiO4@C as a highly stable cathode material for lithium-ion batteries”, Nanoscale Res Lett, 14, 2019.
  • J.M. McGraw, C.S. Bahn, P.A. Parilla, J.D. Perkins, D.W. Readey and D.S. Ginley, “Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes”, Electrochim Acta, 45, 1999.
  • Y. Shi, J. Fu, K. Hui, J. Liu, C. Gao, S. Chang, Y. Chen, X. Gao, T. Gao, L. Xu, Q. Wei and M. Tang, “Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries”, Microstructures, 1, 2021.
  • W. Myint, K. Lolupiman, C. Yang, P. Woottapanit, W. Limphirat, P. Kidkhunthod, M. Muzakir, M. Karnan, X. Zhang and J. Qin, “Exploring the electrochemical superiority of V2O5/TiO2@Ti3C2-MXene hybrid nanostructures for enhanced lithium-ion battery performance”, ACS Appl Mater Interfaces, 16, 53764–53774, 2024.
  • M.Z. Iqbal, S. Zakar, M. Tayyab, S.S. Haider, M. Alzaid, A.M. Afzal and S. Aftab, “Scrutinizing the charge storage mechanism in SrO based composites for asymmetric supercapacitors by diffusion-controlled process”, Applied Nanoscience (Switzerland), 10, 2020.
  • T. Brezesinski, J. Wang, S.H. Tolbert and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors”, Nat Mater, 9, 2010.
  • H.J. Zhang, Y.K. Wang and L. Bin Kong, “A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe 2 nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors”, Nanoscale, 11, 7263–7276, 2019.
  • Y. Gogotsi and R.M. Penner, “Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like?”, ACS Nano, 12, 2018.
  • G. Song, X. Huang, H. Feng, Z. Zuo, J. Li, D. Tang, Q. Wei and B.A. Mei, “Physical interpretations of diffusion-controlled intercalation and surface-redox charge storage behaviors”, Energy Storage Mater, 61, 2023.
  • J. Lin, C. Wu, W. Ling, L. Liu, X. Yang and N. Zhou, “Coil-like Si-based composites prepared by encapsulating self-healing liquid metal-coated nanosilicon via flexible MXene for high-performance lithium-ion battery anodes”, J Power Sources, 629, 2025.
  • G. Elomari, L. Hdidou, H. Larhlimi, M. Aqil, M. Makha, J. Alami and M. Dahbi, “Sputtered silicon-coated graphite electrodes as high cycling stability and improved kinetics anodes for lithium ion batteries”, ACS Appl Mater Interfaces, 16, 2024.
  • L. Zeng, P. Li, M. Ouyang, S. Gao and K. Liang, “Carbon-coated CF-Si/Al anodes for improved lithium-ion battery performance”, Batteries, 11, 2025.
  • H. Luo, X. Zhang, Z. Wang, L. Zhang, C. Xu, S. Huang, W. Pan, W. Cai and Y. Zhang, “Vanadium-tailored silicon composite with furthered ion diffusion behaviors for longevity lithium-ion storage”, ACS Appl Mater Interfaces, 15, 2023.
  • N. Liu, L. Hu, M.T. McDowell, A. Jackson and Y. Cui, “Prelithiated silicon nanowires as an anode for lithium ion batteries”, ACS Nano, 5, 2011.
  • X. Chen, H. Zhu, Y.C. Chen, Y. Shang, A. Cao, L. Hu and G.W. Rubloff, “MWCNT/V 2O 5 core/shell sponge for high areal capacity and power density Li-ion cathodes”, ACS Nano, 6, 2012.
  • G.F.I. Toki, M.K. Hossain, W.U. Rehman, R.Z.A. Manj, L. Wang and J. Yang, “Recent progress and challenges in silicon-based anode materials for lithium-ion batteries”, Industrial Chemistry & Materials, 2, 2024.
  • Y. Liu, R. Guo, H. Zhu and X. Wang, “A novel propeller-like Si@WO3@C with boosted electrochemical properties as anode material for lithium-ion batteries”, Vacuum, 184, 2021.
  • U. Toçoğlu, G. Hatipoğlu, M. Alaf, F. Kayış and H. Akbulut, “Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering”, Appl Surf Sci, 389, 507–513, 2016.
  • A. Huang, X. Zhang, Q. Zhang, Y. Zhang, Z. Ma, H. Lin, X. Huang, K. Rui and J. Zhu, “Stereoactive metallic vanadium oxide barriers to boost silicon-based lithium-ion storage”, Adv Mater Interfaces, 2022.
  • H. Xu, J. Chen, H. Zhang, Y. Zhang, W. Li and Y. Wang, “Fabricating SiO2-coated V2O5 nanoflake arrays for high-performance lithium-ion batteries with enhanced cycling capability”, J Mater Chem A Mater, 4, 2016.
  • J. Kumchompoo, P. Kunthadee, N. Laorodphan, P. Kidkhunthod, S. Kuimalee, T. Tangkuaram and R. Puntharod, “The solid-state reaction facilitated by a microwave-assisted method for lithium vanadium silicon oxide synthesis by incorporating pure silica and rice husk ash for the application as anode material in lithium-ion battery”, Radiation Physics and Chemistry, 207, 2023.
  • M. Salah, C. Hall, P.L. Yap and M. Fabretto, “Silicon-tin thin-film anodes for low and high power-density lithium-ion batteries”, Thin Solid Films, 796, 2024.
There are 69 citations in total.

Details

Primary Language English
Subjects Electrochemistry, Colloid and Surface Chemistry, Nanochemistry
Journal Section Research Article
Authors

Elif Muslu Yılmaz 0000-0001-9347-9353

Ayşegül Öksüz 0000-0002-9487-7350

Esin Eren 0000-0002-7416-0280

Submission Date July 11, 2025
Acceptance Date September 15, 2025
Publication Date November 26, 2025
Published in Issue Year 2025 Volume: 20 Issue: 2

Cite

IEEE E. Muslu Yılmaz, A. Öksüz, and E. Eren, “Synergetic Li-ion Storage Effects of Nanostructured V2O5–Modified Silicon Thin Film Anodes”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 20, no. 2, pp. 143–159, 2025, doi: 10.29233/sdufeffd.1740437.