Synergetic Li-ion Storage Effects of Nanostructured V2O5–Modified Silicon Thin Film Anodes
Year 2025,
Volume: 20 Issue: 2, 143 - 159, 26.11.2025
Elif Muslu Yılmaz
,
Ayşegül Öksüz
,
Esin Eren
Abstract
In this study, a nanostructured vanadium pentoxide (V₂O₅)-modified silicon (Si) thin film anode was successfully fabricated using radio frequency (RF) magnetron sputtering to enhance the electrochemical performance of Si-based thin film anodes for lithium-ion batteries (LIBs). Structural and morphological characterization confirmed the successful deposition of V2O5 interlayer modified Si thin film architecture with improved surface roughness and compositional uniformity. Electrochemical analyses revealed a synergistic effect between the high-capacity Si and the pseudocapacitive behavior of V₂O₅. Cyclic voltammetry (CV) and kinetic studies demonstrated a mixed charge storage mechanism, with both diffusion-controlled and capacitive contributions. The modified Si thin film anode delivered initial discharge capacity of ~2013 mAh/g, followed by a stable reversible capacity of 367 mAh/g over 180 cycles. These results suggest that V₂O₅ interlayer engineering offers a promising strategy to overcome the limitations of Si anodes and advance high-performance LIB systems.
References
-
K. Kumar and R. Kundu, “Enlightenment of the underestimated parameters for a fast-charging energy-dense anode for lithium-ion batteries: an outlook”, Energy and Fuels, 2025.
-
Y. Tzeng, Y.Y. Chiou, A.A. and Wilendra, “Nickel stabilized Si/Ni/Si/Ni multi-layer thin-film anode for long-cycling-life lithium-ion battery”, Batteries, 11, 2025.
-
N. Li, F. Xiang and A. Fratalocchi, “Silicon-based photocatalysis for green chemical fuels and carbon negative technologies”, Adv Sustain Syst, 5, 2021.
-
C.Y. Jhan, P. Sen Wang, S.H. Sung and Y. Tzeng, “Effects of volume-confinement on lithium-ion battery with silicon-based anode”, Mater Today Commun, 39, 2024.
-
Y. Tzeng, C.Y. Jhan, S.H. Sung and Y.Y. Chiou, “Effects of crystalline diamond nanoparticles on silicon thin films as an anode for a lithium-ion battery”, Batteries, 10, 2024.
-
V.A. Sethuraman, K. Kowolik and V. Srinivasan, “Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries”, J Power Sources, 196, 2011.
-
M. Zhou, T. Cai, F. Pu, H. Chen, Z. Wang, H. Zhang and S. Guan, “Graphene/carbon-coated si nanoparticle hybrids as high-performance anode materials for li-ion batteries”, ACS Appl Mater Interfaces, 5, 2013.
-
F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang and L. Chen, “Review—Nano-silicon/carbon composite anode materials towards practical application for next generation li-ion batteries”, J Electrochem Soc, 162, 2015.
-
W. Luo, X. Chen, Y. Xia, M. Chen, L. Wang, Q. Wang, W. Li and J. Yang, “Surface and interface engineering of silicon-based anode materials for lithium-ion batteries”, Adv Energy Mater, 7, 2017.
-
G. Elomari, H. Larhlimi, R. Oubaki, E. Elmaataouy, M. Aqil, Y. Samih, M. Makha, C. Negrila, J. Alami, and M. Dahbi, “Fast charging and high-efficiency sputter-deposited silicon thin film anodes for Li-ion batteries”, J Power Sources, 64, 2025.
-
V.A. Sethuraman, V. Srinivasan, A.F. Bower and P.R. Guduru, “In situ measurements of stress-potential coupling in lithiated silicon”, J Electrochem Soc, 157, 2010.
-
N. Kumagai, S. Komaba, O. Nakano, M. Baba, H. Groult and D. Devilliers, “Characterization of R.F. Magnetron sputtered vanadium oxide thin films and intercalation of lithium in the oxide films”, Electrochemistry, 72, 2004.
-
G. El Omari, K. El Kindoussy, M. Aqil, M. Dahbi, J. Alami and M. Makha, “Advances in physical vapor deposited silicon/carbon based anode materials for Li-ion batteries”, Heliyon, 10, 2024.
-
X.D. Huang, X.F. Gan, F. Zhang, Q.A. Huang and J.Z. Yang, “Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode”, Electrochim Acta, 268, 2018.
-
Y. Xiong, H. Zhang, Y. Qian, Y. Wu, Z. Fu, P. Guo, H. Jiang, J. Li, Y. xiang Wang, S. Yu and H. Zhu, “Amorphous MnO2 modulates the electrochemical performance of Si@AMOA lithium-ion battery anode materials”, J Energy Storage, 108, 2025.
-
J. Li, L. Baggetto, S.K. Martha, G.M. Veith, J. Nanda, C. Liang and N.J. Dudney, “An artificial solid electrolyte interphase enables the use of a LiNi 0.5Mn1.5O4 5 v cathode with conventional electrolytes”, Adv Energy Mater, 3, 1275–1278, 2013.
-
H.-B. Jin, Z.-H. Zhang, and H.-B. Li, “Synergically enhancing lithium-ion storage performance of silicon anode by designing shelled structure with reduced graphene oxide and ZrO 2”, Rare Metals, 2025.
-
X. Chen, B. Wang, Y. Ye, J. Liang, and J. Kong, “Design of electrodes and electrolytes for silicon-based anode lithium-ion batteries”, Energy and Environmental Materials, 2024.
-
J. Yang, Y. Wang, W. Li, L. Wang, Y. Fan, W. Jiang, W. Luo, Y. Wang, B. Kong, C. Selomulya, H.K. Liu, S.X. Dou and D. Zhao, “Amorphous TiO2 shells: A vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage”, Advanced Materials, 29, 2017.
-
Y. He, X. Yu, Y. Wang, H. Li and X. Huang, “Alumina-coated patterned amorphous silicon as the anode for a Lithium-Ion battery with high Coulombic efficiency”, Advanced Materials, 23, 2011.
-
X. Bi, C. Fan, Y. Rao, R. Bai, Z. Wang, C. Li and F. Kong, “Redox process and lithiation mechanism of amorphous vanadium-silicon materials as lithium-ion battery anode”, Mater Today Commun, 39, 2024.
-
A. Garzon-Roman, C.M. Díaz-Barba, D.H. Cuate-Gomez, E. Sanchez-Mora, M.E. de Anda-Reyes, A. Romero-López, C. Zúñiga-Islas and W. Calleja-Arriaga, “Fabrication of V2O5/porous silicon heterostructures by simple and low-cost methods, morphological, structural, optical, and electrical characterization, and their first application as photodetectors”, Sens Actuators A Phys, 387, 2025.
-
B. Yan, X. Li, X. Fu, L. Zhang, Z. Bai and X. Yang, “An elaborate insight of lithiation behavior of V2O5 anode”, Nano Energy, 78, 2020.
-
Y. Zhang, Y. Wang, Z. Xiong, Y. Hu, W. Song, Q.A. Huang, X. Cheng, L.Q. Chen, C. Sun and H. Gu, “V2O5 nanowire composite paper as a high-performance lithium-ion battery cathode”, ACS Omega, 2, 2017.
-
N. González, T. García, C. Morant and R. Barrio, “Fine-tuning ıntrinsic and doped hydrogenated amorphous silicon thin-film anodes deposited by PECVD to enhance capacity and stability in lithium-ion batteries”, Nanomaterials, 14, 2024.
-
E.C. Cengiz, J. Rizell, M. Sadd, A. Matic and N. Mozhzhukhina, “Review—Reference electrodes in Li-ion and next generation batteries: Correct potential assessment, applications and practices, J Electrochem Soc, 168, 2021.
-
S. Casino, T. Beuse, V. Küpers, M. Börner, T. Gallasch, M. Winter and P. Niehoff, “Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells”, J Energy Storage, 41, 2021.
-
J. Wang, S. Li, Y. Zhao, J. Shi, L. Lv, H. Wang, Z. Zhang and W. Feng, “The influence of different Si:C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries”, RSC Adv, 8, 6660–6666, 2018.
-
V.A. Sethuraman, “Capacity fade due to side-reactions in silicon anodes in lithium-ion batteries”, n.d.
-
E. Eren, G.Y. Karaca, U. Koc, L. Oksuz and A.U. Oksuz, “Electrochromic characteristics of radio frequency plasma sputtered WO3 thin films onto flexible polyethylene terephthalate substrates”, Thin Solid Films, 634, 40-50, 2017.
-
S. Lafane, S. Abdelli-Messaci, M. Kechouane, S. Malek, B. Guedouar, J. Lappalainen, O. Nemraoui and T. Kerdja, “Direct growth of VO2 nanoplatelets on glass and silicon by pulsed laser deposition through substrate temperature control”, Thin Solid Films, 632, 2017.
-
Y. Wu, S. Fang, W. Ju and Y. Jiang, “Improving the electrochemical properties of carbon anodes in lithium secondary batteries”, J Power Sources, 70, 1998.
-
M.S.I. Khan, S.W. Oh and Y.J. Kim, “Power of scanning electron microscopy and energy dispersive x-ray analysis in rapid microbial detection and identification at the single cell level, Sci Rep, 10, 2020.
-
M.N. Obrovac, and V.L. Chevrier, “Alloy negative electrodes for Li-ion batteries”, Chem Rev, 114, 2014.
-
V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, and P.R. Guduru, “In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation”, J Power Sources, 195, 2010.
-
S.P.V. Nadimpalli, V.A. Sethuraman, S. Dalavi, B. Lucht, M.J. Chon, V.B. Shenoy and P.R. Guduru, “Quantifying capacity loss due to solid-electrolyte-interphase layer formation on silicon negative electrodes in lithium-ion batteries”, J Power Sources, 215, 2012.
-
W. Bao, C. Fang, D. Cheng, Y. Zhang, B. Lu, D.H.S. Tan, R. Shimizu, B. Sreenarayanan, S. Bai, W. Li, M. Zhang and Y.S. Meng, “Quantifying lithium loss in amorphous silicon thin-film anodes via titration-gas chromatography”, Cell Rep Phys Sci, 2, 2021.
-
J.C. Woodard, W.P. Kalisvaart, S.Y. Sayed, B.C. Olsen, and J.M. Buriak, “Beyond thin films: Clarifying the impact of c-Li15Si4 formation in thin film, nanoparticle, and porous Si electrodes”, ACS Appl Mater Interfaces, 13, 2021.
-
Y. Yue and H. Liang, “Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries”, Adv Energy Mater, 7, 2017.
-
E. Feyzi, A.K. M R, X. Li, S. Deng, J. Nanda and K. Zaghib, “A comprehensive review of silicon anodes for high-energy lithium-ion batteries: Challenges, latest developments, and perspectives”, Next Energy, 5, 2024.
-
C.Y. Jhan, S.H. Sung and Y. Tzeng, “Silicon–nanodiamond-based anode for a lithium-ion battery”, Nanomaterials, 14, 2024.
-
H. Ji, Z. Liu, X. Li, J. Li, Z. Yan and K. Tang, “Recycling silicon waste from the photovoltaic industry to prepare yolk–shell Si@void@C anode materials for lithium–ion batteries”, Processes, 11, 2023.
-
G. Liu, X. Zhu, X. Li, D. Jia, D. Li, Z. Ma and J. Li, “Flexible porous silicon/carbon fiber anode for high−performance lithium−ion batteries”, Materials, 15, 2022.
-
G. Carbonari, F. Maroni, A. Birrozzi, R. Tossici, F. Croce and F. Nobili, “Synthesis and characterization of Si nanoparticles wrapped by V2O5 nanosheets as a composite anode material for lithium-ion batteries”, Electrochim Acta, 281, 676–683, 2018.
-
V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.L. Taberna, S.H. Tolbert, H.D. Abruña, P. Simon, and B. Dunn, “High-rate electrochemical energy storage through Li + intercalation pseudocapacitance”, Nat Mater, 12, 518–522, 2013.
-
A.I. Oje, A.A. Ogwu, M. Mirzaeian, N. Tsendzughul and A.M. Oje, “Pseudo-capacitance of silver oxide thin film electrodes in ionic liquid for electrochemical energy applications”, Journal of Science: Advanced Materials and Devices, 4, 2019.
-
Y. Liu, S.P. Jiang and Z. Shao, “Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development”, Mater Today Adv, 7, 2020.
-
T. Peng, W. Guo, Y. Zhang, Y. Wang, K. Zhu, Y. Guo, Y. Wang, Y. Lu and H. Yan, “The core-shell heterostructure CNT@Li2FeSiO4@C as a highly stable cathode material for lithium-ion batteries”, Nanoscale Res Lett, 14, 2019.
-
J.M. McGraw, C.S. Bahn, P.A. Parilla, J.D. Perkins, D.W. Readey and D.S. Ginley, “Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes”, Electrochim Acta, 45, 1999.
-
Y. Shi, J. Fu, K. Hui, J. Liu, C. Gao, S. Chang, Y. Chen, X. Gao, T. Gao, L. Xu, Q. Wei and M. Tang, “Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries”, Microstructures, 1, 2021.
-
W. Myint, K. Lolupiman, C. Yang, P. Woottapanit, W. Limphirat, P. Kidkhunthod, M. Muzakir, M. Karnan, X. Zhang and J. Qin, “Exploring the electrochemical superiority of V2O5/TiO2@Ti3C2-MXene hybrid nanostructures for enhanced lithium-ion battery performance”, ACS Appl Mater Interfaces, 16, 53764–53774, 2024.
-
M.Z. Iqbal, S. Zakar, M. Tayyab, S.S. Haider, M. Alzaid, A.M. Afzal and S. Aftab, “Scrutinizing the charge storage mechanism in SrO based composites for asymmetric supercapacitors by diffusion-controlled process”, Applied Nanoscience (Switzerland), 10, 2020.
-
T. Brezesinski, J. Wang, S.H. Tolbert and B. Dunn, “Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors”, Nat Mater, 9, 2010.
-
H.J. Zhang, Y.K. Wang and L. Bin Kong, “A facile strategy for the synthesis of three-dimensional heterostructure self-assembled MoSe 2 nanosheets and their application as an anode for high-energy lithium-ion hybrid capacitors”, Nanoscale, 11, 7263–7276, 2019.
-
Y. Gogotsi and R.M. Penner, “Energy storage in nanomaterials - capacitive, pseudocapacitive, or battery-like?”, ACS Nano, 12, 2018.
-
G. Song, X. Huang, H. Feng, Z. Zuo, J. Li, D. Tang, Q. Wei and B.A. Mei, “Physical interpretations of diffusion-controlled intercalation and surface-redox charge storage behaviors”, Energy Storage Mater, 61, 2023.
-
J. Lin, C. Wu, W. Ling, L. Liu, X. Yang and N. Zhou, “Coil-like Si-based composites prepared by encapsulating self-healing liquid metal-coated nanosilicon via flexible MXene for high-performance lithium-ion battery anodes”, J Power Sources, 629, 2025.
-
G. Elomari, L. Hdidou, H. Larhlimi, M. Aqil, M. Makha, J. Alami and M. Dahbi, “Sputtered silicon-coated graphite electrodes as high cycling stability and improved kinetics anodes for lithium ion batteries”, ACS Appl Mater Interfaces, 16, 2024.
-
L. Zeng, P. Li, M. Ouyang, S. Gao and K. Liang, “Carbon-coated CF-Si/Al anodes for improved lithium-ion battery performance”, Batteries, 11, 2025.
-
H. Luo, X. Zhang, Z. Wang, L. Zhang, C. Xu, S. Huang, W. Pan, W. Cai and Y. Zhang, “Vanadium-tailored silicon composite with furthered ion diffusion behaviors for longevity lithium-ion storage”, ACS Appl Mater Interfaces, 15, 2023.
-
N. Liu, L. Hu, M.T. McDowell, A. Jackson and Y. Cui, “Prelithiated silicon nanowires as an anode for lithium ion batteries”, ACS Nano, 5, 2011.
-
X. Chen, H. Zhu, Y.C. Chen, Y. Shang, A. Cao, L. Hu and G.W. Rubloff, “MWCNT/V 2O 5 core/shell sponge for high areal capacity and power density Li-ion cathodes”, ACS Nano, 6, 2012.
-
G.F.I. Toki, M.K. Hossain, W.U. Rehman, R.Z.A. Manj, L. Wang and J. Yang, “Recent progress and challenges in silicon-based anode materials for lithium-ion batteries”, Industrial Chemistry & Materials, 2, 2024.
-
Y. Liu, R. Guo, H. Zhu and X. Wang, “A novel propeller-like Si@WO3@C with boosted electrochemical properties as anode material for lithium-ion batteries”, Vacuum, 184, 2021.
-
U. Toçoğlu, G. Hatipoğlu, M. Alaf, F. Kayış and H. Akbulut, “Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering”, Appl Surf Sci, 389, 507–513, 2016.
-
A. Huang, X. Zhang, Q. Zhang, Y. Zhang, Z. Ma, H. Lin, X. Huang, K. Rui and J. Zhu, “Stereoactive metallic vanadium oxide barriers to boost silicon-based lithium-ion storage”, Adv Mater Interfaces, 2022.
-
H. Xu, J. Chen, H. Zhang, Y. Zhang, W. Li and Y. Wang, “Fabricating SiO2-coated V2O5 nanoflake arrays for high-performance lithium-ion batteries with enhanced cycling capability”, J Mater Chem A Mater, 4, 2016.
-
J. Kumchompoo, P. Kunthadee, N. Laorodphan, P. Kidkhunthod, S. Kuimalee, T. Tangkuaram and R. Puntharod, “The solid-state reaction facilitated by a microwave-assisted method for lithium vanadium silicon oxide synthesis by incorporating pure silica and rice husk ash for the application as anode material in lithium-ion battery”, Radiation Physics and Chemistry, 207, 2023.
-
M. Salah, C. Hall, P.L. Yap and M. Fabretto, “Silicon-tin thin-film anodes for low and high power-density lithium-ion batteries”, Thin Solid Films, 796, 2024.