Research Article
BibTex RIS Cite

A Synthetic, Spectroscopic, Theoretical and Biological Perspective on a Novel Schiff Base Included 4-Aminoantipyrine

Year 2019, , 296 - 315, 30.11.2019
https://doi.org/10.29233/sdufeffd.572188

Abstract

A
novel Schiff base, 4-(([1,1'-biphenyl]-4-ylmethylene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3
H-pyrazol-3-one (BiPhAAP), obtained from
biphenyl carboxaldehyde with 4-aminoantipyrine was characterized using
elemental analysis, FT-IR, and
1H and 13C NMR
spectroscopic methods. In addition to the spectroscopic findings, geometrical
descriptions and the extent of surface interactions in the compound were
determined by X-ray single crystallographic and Molecular Hirshfeld surface
(MHS) analysis techniques. The distinctions between experimental and calculated
FT-IR results have proved the presence of intra-molecular (C–H….O type)
hydrogen bonds in the crystal structure. The in vitro antimicrobial potential,
which was studied against two Gram-negative (
Escherichia coli and Proteus
vulgaris) and two Gram-positive (Bacillus subtilis and Micrococcus luteus) bacterial strains, and
three yeast strains (
Candida albicans,
Aspergillus niger and Candida globrata) was examined by using
the agar well diffusion method at concentrations of 250, 125 and 62.5 mg/mL.
The in vitro antioxidant activities of this compound were estimated by five
different antioxidant assays (DPPH radical scavenging, reducing power, metal
chelating activity, superoxide scavenging, and total antioxidant). Cytotoxic
activity of the new compound was sought against human breast carcinoma cells (MCF-7).
The IC
50 values were established with respect to the MTT test
.

Supporting Institution

Ordu University Scientific Research Projects Coordination Department (ODU-BAP)

Project Number

HD-1709

Thanks

This research was funded by Ordu University Scientific Research Projects Coordination Department (ODU-BAP) under financial support (No. HD-1709).

References

  • [1] N. Raman, S. Johnson Raja, and A. Sakthivel, “Transition Metal Complexes with Schiff-Base Ligands: 4-Aminoantipyrine Based Derivatives–A Review,” J. Coord. Chem., 62 (5), 691–709, 2009.
  • [2] M. M. Ghorab, M. G. El-Gazzar, and Mansour S. Alsaid, , “Synthesis, Characterization and Anti-Breast Cancer Activity of New 4-Aminoantipyrine-Based Heterocycles,” Int. J. Mol. Sci., 15, 7539-7553, 2014.
  • [3] H. Liang, Q. Yu, R-X. Hu, Z. Y. Zhou, X.G. Zhou, “Synthesis, Crystal Structure and Spectroscopic Properties of a Copper(II) Complex of the Schiff-Base Derived from Picolinaldehyde N-oxide and 4-Aminoantipyridine,” Transit Metal Chem., 27, 454-457, 2002.
  • [4] V. C. Filho, R. Correa, Z.Vaz, J. B.Calixto, R. J. Nunes, T. R. Pinheiro, A. D. Andricopulo, R. A. Yunes, “Further Studies on Analgesic Activity of Cyclic Imides,” Farmaco, 53(1), 55–57, 1998.
  • [5] V. Prakash, M.S. Suresh, “Preparation Characterization, 1H, 13C NMR Study and Antibacterial Studies of Schiff Bases and Their Zn(II) Chelates,” Res J Pharm Biol Chem Sci., 4(4), 1536-1550, 2013.
  • [6] I. Mohanram, J. Meshram, A. Shaikh, B. Kandpal, “Microwave-Assisted One-Pot Synthesis of Bioactive UGI-4CR using Fluorite as Benign and Heterogeneous Catalyst,” Synth. Commun,” 43, 3322-3328, 2013.
  • [7] K. Bernardo, S. Leppard, A. Robert, G. Commenges, F. Dehan, B. Meunier, “Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts,” Inorg. Chem., 35, 387–396, 1996.
  • [8] D. Chiaramonte, J. M. Steiner, J. D. Broussard, K. Baer, S. Gumminger, E. M. Moeller, D. A. Williams, R. Shumway, “Use of a 13C-Aminopyrine Blood Test: First Clinical Impressions,” Can. J. Vet. Res., 67, 183–188, , 2003.
  • [9] Shamsuzzamana, H. Khanam, A. A., Mashraia, M. Asif, A. Ali, A. Barakat, Y. N. Mabkhot “Synthesis, Crystal Structure, Hirshfeld Surfaces, and Thermal, Mechanical and Dielectrical Properties of Cholest-5-ene,” J. Taibah Univ. Sci., 11, 141–150, 2017.
  • [10] M. G. Perez, L. Fourcade, M. A. Mateescu, J. Paquin, “Neutral Red versus MTT Assay of Cell Viability in the Presence of Copper Compounds,” Anal. Biochem., 535, 43-46, 2017,
  • [11] E. Apohan, Ü. Yilmaz, Ö.Yilmaz, A.Serindag, H. Küçükbay, Ö. Yesilada, Y. Baran, “Synthesis, Cytotoxic and Antimicrobial Activities of Novel Cobalt and Zinc Complexes of Benzimidazole Derivatives,” J. Organomet. Chem., 828, 52-58, 2017.
  • [12] C. Simioni, G. Zauli, A. M. Martelli, M. Vitale, G. Sacchetti, A. Gonelli, L. M. Neri, “Oxidative Stress: Role of Physical Exercise and Antioxidant Nutraceuticals in Adulthood and Aging,” Oncotarget, 9(24), 17181-17198, 2018.
  • [13] B. Poljsak, D. Šuput, I. Milisav “Achieving the Balance Between ROS and Antioxidants: When to Use the Synthetic Antioxidants,” Oxid MedCell Longev., 2013, 1-11, 2013.
  • [14] Stoe Cie X-AREA (Version1.18) and X-RED32 (Version 1.04), Darmstadt, Germany, 2002.
  • [15] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112–122, 2008.
  • [16] L. J. Farrugia, “ORTEP-3 for Windows - A Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr., 30, 565, 1997.
  • [17] L.J. Farrugia, 1999. “WinGX Suite for Small-Molecule Single-Crystal Crystallography,” J. Appl. Cryst., 32, 837–838.
  • [18] S.K. Wolff, D.J. Grimwood, J.J., McKinnon, D. Jayatilaka, M.A. Spackman, 2007. CrystalExplorer 2.0, University of Western Australia: Perth, Australia.
  • [19] H. L. Singh, J. Singh, “Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine,” Bioinorg. Chem. Appl., 2014, 1-12, 2014.
  • [20] M. Manjunath, A.D. Kulkarni, G.B., Bagihalli, S. Malladi, S.A. Patil, “Bio-important Antipyrine Derived Schiff Bases and Their Transition Metal Complexes: Synthesis, Spectroscopic Characterization, Antimicrobial, Anthelmintic and DNA Cleavage Investigation,” J. Mol. Struct. 1127, 314-321, 2017.
  • [21] W. Brand-Williams, M.E. Cuvelier, C. Berset, “Use of a Free Radical Method to Evaluate Antioxidant Activity,” LWT-Food Sci. Technol., 28, 25-30, 1995.
  • [22] M. Oyaizu, 1986. “Studies on Product of Browning Reaction Prepared from Glucose Amine,” Japan Journal of Nutrition, 44, 307-315.
  • [23] E. A. Decker, B. Welch, 1990. “Role of Ferritin as a Lipid Oxidation Catalyst in Muscle Food. J. Agr. Food Chem.,” 38, 674-677.
  • [24] F. Liu, V.E., Ooi, S.T. Chang, “Free Radical Scavenging Activity of Mushroom Polysaccharide Extracts,” Life Sci., 60, 763-771, 1997.
  • [25] L.W., Chang, W.J. Yen, S.C. Huang, P. D. Duh, “Antioxidant Activity of Sesame Coat,” Food Chem., 78, 347-354, 2002.
  • [26] T. Mosmann, 1983. “Rapid Colourimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” J. Immunol. Methods, 65(1-2), 55-63.
  • [27] S.W. Lim, H.S. Loh, K.N. Ting, B.T. Dawn, Z.N. Allaudin, “Reduction of MTT to Purple Formazan by Vitamin E Isomers in the Absence of Cells,” Trop. Life Sci. Res., 26(1), 111–120, 2015.
  • [28] A.D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, 5648–5652, 1993.
  • [29] C. Lee, W. Yang, R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Phys. Rev. B, 37, 785–789, 1988.
  • [30] H.B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” J. Comput. Chem., 3, 214–218, 1982.
  • [31] C. Peng, P.Y. Ayala, H.B., Schlegel, M.J. Frisch, “Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States,” J. Comput. Chem., 17, 49–56, 1996
  • [32] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al- Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03, Gaussian Inc., Wallingford, CT, USA.
  • [33] R. Dennington, T. Keith, J. Millam, 2007. GaussView4.1. Semichem Inc., Shawnee Mission, KS, USA.
  • [34] M.J. Turner, J.J. MacKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, and M. A. Spackman, “Crystal Explorer17.5. University of Western Australia, 2017.
  • [35] P. Sen, S. Kansiz, N. Dege, T.S., Iskenderov, S.Z. Yildiz, “Crystal Structure and Hirshfeld Surface Analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile Monohydrate,” Acta Crystallogr., E: Crystallographic Communications, 74, 994–997, 2018.
  • [36] E. Aydemir, S. Kansiz, M.K. Gumus, N.Y. Gorobets, N. Dege, “Crystal Structure and Hirshfeld Surface Analysis of 7-Ethoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano-[1,2,4]triazolo[1,5-c][1,3,5] benzoxadiazocine,” Acta Crystallographica Section E: Crystallographic Communications, 74, 367–370, 2018.
  • [37] S. Kansiz, Z.M. Almarhoon, N. Dege, “Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Tetraaquabis (isonicotinamide-κN1) cobalt (II) fumarate,” Acta Crystallographica Section E: Crystallographic Communications, 74, 217–220, 2018.
  • [38] M. K. Gümüş¸, S. Kansız, E. Aydemir, N. Y. Gorobets, N. Dege, “Structural Features of 7-Methoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine Experimental and Theoretical (HF and DFT) Studies, Surface Properties (MEP, Hirshfeld),” J. Mol. Struct., 1168, 280–290, 2018.
  • [39] Y. Ünver, K. Sancak, H. Tanak, İ. Değirmencioğlu, E. Düğdü, M. Er, Ş. Işık, “5-Benzyl-4-[3-(1H-imidazol-1-yl) propyl]-2H-1, 2, 4-triazol-3 (4H)-ones: Synthesis, Spectroscopic Characterization, Crystal Structure and a Comparison of Theoretical and Experimental IR Results by DFT Calculations,” J. Mol Struct., 936(1-3), 46-55, 2009.
  • [40] J.P. Merrick, D. Moran, L. Radom, “An Evaluation of Harmonic Vibrational Frequency Scale Factors,” J. Phys. Chem. A, 111, 11683-11700, 2007.
  • [41] H. Tanak, F. Erşahin, Y. Köysal, E., Ağar, S. Işik, M. Yavuz, “Theoretical Modeling and Experimental Studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine,” J. Mol. Model., 15(10), 1281-1290, 2009.
  • [42] H. Gokce, S., Bahceli, “Analysis of Molecular Structure, Spectroscopic Properties (FT-IR, Micro-Raman and UV–vis) and Quantum Chemical Calculations of Free and Ligand 2-Thiopheneglyoxylic acid in Metal Halides (Cd, Co, Cu, Ni and Zn),” Spectrochim. Acta A: Mol. Biomol. Spectroscop., 116, 242–250, 2013.
  • [43] G. Socrates, 2004. “Infrared and Raman Characteristic Group Frequencies. John Wiley & Sons. NewYork, London, 362s.
  • [44] J. Joseph, G.A.B. Rani, “Metal-Based Molecular Design Tuning Biochemical Behavior: Synthesis, Characterization, and Biochemical Studies of Mixed Ligand Complexes Derived From 4-Aminoantipyrine Derivatives,” Spectroscop. Lett., 47(2), 86-100, 2014.
  • [45] N. Raman, J. D., Raja, A. Sakthivel, “Synthesis, Spectral Characterization of Schiff Base Transition Metal Complexes: DNA Cleavage and Antimicrobial Activity Studies,” J. Chem.Sci., 119(4), 303–310, 2007.
  • [46] V. Srinivasan, H. Sivaramakrishnan, B. Karthikeyan, “Detection, Isolation and Characterization of Principle Synthetic Route Indicative Impurity in Telmisartan,” Arab. J. Chem., 9(2), 1516-1522, 2016.
  • [47] M.A. Hadi, “Coordination Behavior of N/O Donor Ligand with Some Transition Metals,” Acta Chimica Pharmaceutica Indica, 3(2), 127-134, 2013.
  • [48] L. Wang, C. Hu, L. Shao “The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future,” Int. J. Nanomedicine, 2017(12), 1227–1249, 2017.
  • [49] Z.H., Chohan, A. Scozzafava, C.T. Supuran, “Zinc Complexes of Benzothiazole-Derived Schiff Bases with Antibacterial Activity,” J. Enzyme Inhib. Med. Chem., 18(3), 259-263, 2003.
  • [50] J. Joseph, G.A.B. Rani, “Antioxidant and Biochemical Activities of Mixed Ligand Complexes,” Appl. Biochem. Biotechnol., 172(2), 867–890, 2014.
  • [51] T. Gabriela, D.S. Catalina, Z. Ana-maria, J. Alexandra, T. Cristina, 2014. “Preliminary Screening of Biological Activities of Some new Schiff Bases of Isatins,” Farmacia, 62(1), 14-22.
  • [52] Z. Uyar, D. Erdener, İ. Koyuncu, Ü. Arslan, 2017. “Synthesis, Characterization, and Cytotoxic Activities of a Schiff Base Ligand and Its Binuclear Copper(II) and Manganese(III) Complexes,” J. Turkish Chem. Soc., Sect. Chem., 4(3), 963-980.
  • [53] N. A. Taş, A. Şenocak, A. Aydın,. “Preparation and Cytotoxicity Evaluation of Some Amino Acid Methyl Ester Schiff Bases,” J. Turkish Chem. Soc., Sect. Chem, 5(2), 585-606, 2018.
  • [54] R. Manikandan, P. Viswanathamurthi, K. Velmurugan, “Synthesis, Characterization and Crystal Structure of Cobalt(III) Complexes Containing 2-Acetylpyridine thiosemicarbazones: DNA/Protein Interaction, Radical Scavenging and Cytotoxic Activities,” J. Photoch. Photobio. B., 130, 205–216, 2014.

4-Aminoantipirin İçeren Yeni Bir Schiff Baz Üzerine Sentetik, Spektroskopik, Teorik ve Biyolojik Açıdan Bir İnceleme

Year 2019, , 296 - 315, 30.11.2019
https://doi.org/10.29233/sdufeffd.572188

Abstract

4-Aminoantipirin ile
bifenil karboksaldehitten yeni bir Schiff bazı olan 4-(([1,1'-bifenil]-4-ilmetilen)amino)-1,5-dimetil-2-fenil-1,2-dihidro-3
H-pirazol-3-on
(BiPhAAP)
sentezlendi ve elementel analiz, FT-IR ve
1H ve 13C NMR
spektroskopik metotları kullanılarak karakterize edildi. Spektroskopik
bulgulara ek olarak, geometrik tanımlar ve bileşikteki yüzey etkileşimlerinin
kapsamı X-ışını kristalografik ve Moleküler Hirshfeld yüzey (MHS) analizi
teknikleriyle belirlenmiştir. Deneysel ve hesaplanan FT-IR sonuçları arasındaki
farklar kristal yapısında molekül içi (C-H….O tipi) hidrojen bağlarının
varlığını kanıtlamıştır. İki Gram negatif (
Escherichia
coli
ve Proteus vulgaris) ve iki
Gram pozitif (
Bacillus subtilis ve Micrococcus luteus) bakteri suşu ve üç
maya suşuna (
Candida albicans, Aspergillus niger ve Candida globra) karşı çalışılan in vitro antimikrobiyal potansiyel 250,
125 ve 62.5 mg/mL konsantrasyonlarda
agar well difüzyon metodu kullanılarak
incelenmiştir. Bu bileşiğin
in vitro
antioksidan aktiviteleri, beş farklı antioksidan testi (DPPH radikal süpürme,
indirgeme gücü, metal şelatlama etkinliği, süperoksit temizleme ve toplam antioksidan)
ile hesaplandı. Yeni bileşiğin sitotoksik aktivitesi, insan meme kanseri
hücrelerine (MCF-7) karşı araştırıldı. IC
50 değerleri ise, MTT
testine göre belirlendi.

Project Number

HD-1709

References

  • [1] N. Raman, S. Johnson Raja, and A. Sakthivel, “Transition Metal Complexes with Schiff-Base Ligands: 4-Aminoantipyrine Based Derivatives–A Review,” J. Coord. Chem., 62 (5), 691–709, 2009.
  • [2] M. M. Ghorab, M. G. El-Gazzar, and Mansour S. Alsaid, , “Synthesis, Characterization and Anti-Breast Cancer Activity of New 4-Aminoantipyrine-Based Heterocycles,” Int. J. Mol. Sci., 15, 7539-7553, 2014.
  • [3] H. Liang, Q. Yu, R-X. Hu, Z. Y. Zhou, X.G. Zhou, “Synthesis, Crystal Structure and Spectroscopic Properties of a Copper(II) Complex of the Schiff-Base Derived from Picolinaldehyde N-oxide and 4-Aminoantipyridine,” Transit Metal Chem., 27, 454-457, 2002.
  • [4] V. C. Filho, R. Correa, Z.Vaz, J. B.Calixto, R. J. Nunes, T. R. Pinheiro, A. D. Andricopulo, R. A. Yunes, “Further Studies on Analgesic Activity of Cyclic Imides,” Farmaco, 53(1), 55–57, 1998.
  • [5] V. Prakash, M.S. Suresh, “Preparation Characterization, 1H, 13C NMR Study and Antibacterial Studies of Schiff Bases and Their Zn(II) Chelates,” Res J Pharm Biol Chem Sci., 4(4), 1536-1550, 2013.
  • [6] I. Mohanram, J. Meshram, A. Shaikh, B. Kandpal, “Microwave-Assisted One-Pot Synthesis of Bioactive UGI-4CR using Fluorite as Benign and Heterogeneous Catalyst,” Synth. Commun,” 43, 3322-3328, 2013.
  • [7] K. Bernardo, S. Leppard, A. Robert, G. Commenges, F. Dehan, B. Meunier, “Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts,” Inorg. Chem., 35, 387–396, 1996.
  • [8] D. Chiaramonte, J. M. Steiner, J. D. Broussard, K. Baer, S. Gumminger, E. M. Moeller, D. A. Williams, R. Shumway, “Use of a 13C-Aminopyrine Blood Test: First Clinical Impressions,” Can. J. Vet. Res., 67, 183–188, , 2003.
  • [9] Shamsuzzamana, H. Khanam, A. A., Mashraia, M. Asif, A. Ali, A. Barakat, Y. N. Mabkhot “Synthesis, Crystal Structure, Hirshfeld Surfaces, and Thermal, Mechanical and Dielectrical Properties of Cholest-5-ene,” J. Taibah Univ. Sci., 11, 141–150, 2017.
  • [10] M. G. Perez, L. Fourcade, M. A. Mateescu, J. Paquin, “Neutral Red versus MTT Assay of Cell Viability in the Presence of Copper Compounds,” Anal. Biochem., 535, 43-46, 2017,
  • [11] E. Apohan, Ü. Yilmaz, Ö.Yilmaz, A.Serindag, H. Küçükbay, Ö. Yesilada, Y. Baran, “Synthesis, Cytotoxic and Antimicrobial Activities of Novel Cobalt and Zinc Complexes of Benzimidazole Derivatives,” J. Organomet. Chem., 828, 52-58, 2017.
  • [12] C. Simioni, G. Zauli, A. M. Martelli, M. Vitale, G. Sacchetti, A. Gonelli, L. M. Neri, “Oxidative Stress: Role of Physical Exercise and Antioxidant Nutraceuticals in Adulthood and Aging,” Oncotarget, 9(24), 17181-17198, 2018.
  • [13] B. Poljsak, D. Šuput, I. Milisav “Achieving the Balance Between ROS and Antioxidants: When to Use the Synthetic Antioxidants,” Oxid MedCell Longev., 2013, 1-11, 2013.
  • [14] Stoe Cie X-AREA (Version1.18) and X-RED32 (Version 1.04), Darmstadt, Germany, 2002.
  • [15] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112–122, 2008.
  • [16] L. J. Farrugia, “ORTEP-3 for Windows - A Version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr., 30, 565, 1997.
  • [17] L.J. Farrugia, 1999. “WinGX Suite for Small-Molecule Single-Crystal Crystallography,” J. Appl. Cryst., 32, 837–838.
  • [18] S.K. Wolff, D.J. Grimwood, J.J., McKinnon, D. Jayatilaka, M.A. Spackman, 2007. CrystalExplorer 2.0, University of Western Australia: Perth, Australia.
  • [19] H. L. Singh, J. Singh, “Synthesis, Spectroscopic, Molecular Structure, and Antibacterial Studies of Dibutyltin(IV) Schiff Base Complexes Derived from Phenylalanine, Isoleucine, and Glycine,” Bioinorg. Chem. Appl., 2014, 1-12, 2014.
  • [20] M. Manjunath, A.D. Kulkarni, G.B., Bagihalli, S. Malladi, S.A. Patil, “Bio-important Antipyrine Derived Schiff Bases and Their Transition Metal Complexes: Synthesis, Spectroscopic Characterization, Antimicrobial, Anthelmintic and DNA Cleavage Investigation,” J. Mol. Struct. 1127, 314-321, 2017.
  • [21] W. Brand-Williams, M.E. Cuvelier, C. Berset, “Use of a Free Radical Method to Evaluate Antioxidant Activity,” LWT-Food Sci. Technol., 28, 25-30, 1995.
  • [22] M. Oyaizu, 1986. “Studies on Product of Browning Reaction Prepared from Glucose Amine,” Japan Journal of Nutrition, 44, 307-315.
  • [23] E. A. Decker, B. Welch, 1990. “Role of Ferritin as a Lipid Oxidation Catalyst in Muscle Food. J. Agr. Food Chem.,” 38, 674-677.
  • [24] F. Liu, V.E., Ooi, S.T. Chang, “Free Radical Scavenging Activity of Mushroom Polysaccharide Extracts,” Life Sci., 60, 763-771, 1997.
  • [25] L.W., Chang, W.J. Yen, S.C. Huang, P. D. Duh, “Antioxidant Activity of Sesame Coat,” Food Chem., 78, 347-354, 2002.
  • [26] T. Mosmann, 1983. “Rapid Colourimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” J. Immunol. Methods, 65(1-2), 55-63.
  • [27] S.W. Lim, H.S. Loh, K.N. Ting, B.T. Dawn, Z.N. Allaudin, “Reduction of MTT to Purple Formazan by Vitamin E Isomers in the Absence of Cells,” Trop. Life Sci. Res., 26(1), 111–120, 2015.
  • [28] A.D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys., 98, 5648–5652, 1993.
  • [29] C. Lee, W. Yang, R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Phys. Rev. B, 37, 785–789, 1988.
  • [30] H.B. Schlegel, “Optimization of Equilibrium Geometries and Transition Structures,” J. Comput. Chem., 3, 214–218, 1982.
  • [31] C. Peng, P.Y. Ayala, H.B., Schlegel, M.J. Frisch, “Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States,” J. Comput. Chem., 17, 49–56, 1996
  • [32] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr, Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al- Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). GAUSSIAN03, Gaussian Inc., Wallingford, CT, USA.
  • [33] R. Dennington, T. Keith, J. Millam, 2007. GaussView4.1. Semichem Inc., Shawnee Mission, KS, USA.
  • [34] M.J. Turner, J.J. MacKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, and M. A. Spackman, “Crystal Explorer17.5. University of Western Australia, 2017.
  • [35] P. Sen, S. Kansiz, N. Dege, T.S., Iskenderov, S.Z. Yildiz, “Crystal Structure and Hirshfeld Surface Analysis of 4-[4-(1H-benzo[d]imidazol-2-yl)phenoxy]phthalonitrile Monohydrate,” Acta Crystallogr., E: Crystallographic Communications, 74, 994–997, 2018.
  • [36] E. Aydemir, S. Kansiz, M.K. Gumus, N.Y. Gorobets, N. Dege, “Crystal Structure and Hirshfeld Surface Analysis of 7-Ethoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano-[1,2,4]triazolo[1,5-c][1,3,5] benzoxadiazocine,” Acta Crystallographica Section E: Crystallographic Communications, 74, 367–370, 2018.
  • [37] S. Kansiz, Z.M. Almarhoon, N. Dege, “Synthesis, Crystal Structure and Hirshfeld Surface Analysis of Tetraaquabis (isonicotinamide-κN1) cobalt (II) fumarate,” Acta Crystallographica Section E: Crystallographic Communications, 74, 217–220, 2018.
  • [38] M. K. Gümüş¸, S. Kansız, E. Aydemir, N. Y. Gorobets, N. Dege, “Structural Features of 7-Methoxy-5-methyl-2-(pyridin-3-yl)-11,12-dihydro-5,11-methano[1,2,4]triazolo[1,5-c][1,3,5]benzoxadiazocine Experimental and Theoretical (HF and DFT) Studies, Surface Properties (MEP, Hirshfeld),” J. Mol. Struct., 1168, 280–290, 2018.
  • [39] Y. Ünver, K. Sancak, H. Tanak, İ. Değirmencioğlu, E. Düğdü, M. Er, Ş. Işık, “5-Benzyl-4-[3-(1H-imidazol-1-yl) propyl]-2H-1, 2, 4-triazol-3 (4H)-ones: Synthesis, Spectroscopic Characterization, Crystal Structure and a Comparison of Theoretical and Experimental IR Results by DFT Calculations,” J. Mol Struct., 936(1-3), 46-55, 2009.
  • [40] J.P. Merrick, D. Moran, L. Radom, “An Evaluation of Harmonic Vibrational Frequency Scale Factors,” J. Phys. Chem. A, 111, 11683-11700, 2007.
  • [41] H. Tanak, F. Erşahin, Y. Köysal, E., Ağar, S. Işik, M. Yavuz, “Theoretical Modeling and Experimental Studies on N-n-Decyl-2-oxo-5-nitro-1-benzylidene-methylamine,” J. Mol. Model., 15(10), 1281-1290, 2009.
  • [42] H. Gokce, S., Bahceli, “Analysis of Molecular Structure, Spectroscopic Properties (FT-IR, Micro-Raman and UV–vis) and Quantum Chemical Calculations of Free and Ligand 2-Thiopheneglyoxylic acid in Metal Halides (Cd, Co, Cu, Ni and Zn),” Spectrochim. Acta A: Mol. Biomol. Spectroscop., 116, 242–250, 2013.
  • [43] G. Socrates, 2004. “Infrared and Raman Characteristic Group Frequencies. John Wiley & Sons. NewYork, London, 362s.
  • [44] J. Joseph, G.A.B. Rani, “Metal-Based Molecular Design Tuning Biochemical Behavior: Synthesis, Characterization, and Biochemical Studies of Mixed Ligand Complexes Derived From 4-Aminoantipyrine Derivatives,” Spectroscop. Lett., 47(2), 86-100, 2014.
  • [45] N. Raman, J. D., Raja, A. Sakthivel, “Synthesis, Spectral Characterization of Schiff Base Transition Metal Complexes: DNA Cleavage and Antimicrobial Activity Studies,” J. Chem.Sci., 119(4), 303–310, 2007.
  • [46] V. Srinivasan, H. Sivaramakrishnan, B. Karthikeyan, “Detection, Isolation and Characterization of Principle Synthetic Route Indicative Impurity in Telmisartan,” Arab. J. Chem., 9(2), 1516-1522, 2016.
  • [47] M.A. Hadi, “Coordination Behavior of N/O Donor Ligand with Some Transition Metals,” Acta Chimica Pharmaceutica Indica, 3(2), 127-134, 2013.
  • [48] L. Wang, C. Hu, L. Shao “The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future,” Int. J. Nanomedicine, 2017(12), 1227–1249, 2017.
  • [49] Z.H., Chohan, A. Scozzafava, C.T. Supuran, “Zinc Complexes of Benzothiazole-Derived Schiff Bases with Antibacterial Activity,” J. Enzyme Inhib. Med. Chem., 18(3), 259-263, 2003.
  • [50] J. Joseph, G.A.B. Rani, “Antioxidant and Biochemical Activities of Mixed Ligand Complexes,” Appl. Biochem. Biotechnol., 172(2), 867–890, 2014.
  • [51] T. Gabriela, D.S. Catalina, Z. Ana-maria, J. Alexandra, T. Cristina, 2014. “Preliminary Screening of Biological Activities of Some new Schiff Bases of Isatins,” Farmacia, 62(1), 14-22.
  • [52] Z. Uyar, D. Erdener, İ. Koyuncu, Ü. Arslan, 2017. “Synthesis, Characterization, and Cytotoxic Activities of a Schiff Base Ligand and Its Binuclear Copper(II) and Manganese(III) Complexes,” J. Turkish Chem. Soc., Sect. Chem., 4(3), 963-980.
  • [53] N. A. Taş, A. Şenocak, A. Aydın,. “Preparation and Cytotoxicity Evaluation of Some Amino Acid Methyl Ester Schiff Bases,” J. Turkish Chem. Soc., Sect. Chem, 5(2), 585-606, 2018.
  • [54] R. Manikandan, P. Viswanathamurthi, K. Velmurugan, “Synthesis, Characterization and Crystal Structure of Cobalt(III) Complexes Containing 2-Acetylpyridine thiosemicarbazones: DNA/Protein Interaction, Radical Scavenging and Cytotoxic Activities,” J. Photoch. Photobio. B., 130, 205–216, 2014.
There are 54 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Makaleler
Authors

Aliye Gediz Ertürk

Project Number HD-1709
Publication Date November 30, 2019
Published in Issue Year 2019

Cite

IEEE A. Gediz Ertürk, “A Synthetic, Spectroscopic, Theoretical and Biological Perspective on a Novel Schiff Base Included 4-Aminoantipyrine”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 2, pp. 296–315, 2019, doi: 10.29233/sdufeffd.572188.