Research Article
BibTex RIS Cite

Peroxidase Gene Based Genetic Relationships Among Safflower Genotypes

Year 2019, , 367 - 373, 30.11.2019
https://doi.org/10.29233/sdufeffd.612472

Abstract

Safflower
(
Carthamus tinctorius L.) is an oil
crop species and is widely cultivated since ancient times in Near East. Fifteen
peroxidase gene based markers (POGP) were used to fingerprint 39 genotypes (33
cultivars, 6 breeding lines) from 6 countries to asses genetic diversity within
elite safflower germplasm. Fourteen POGP markers produced polymorphisms and one
marker was monomorphic. POGP markers produced total of 71 bands of which 50
were polymorphic. Average number of bands produced by POGP markers were 4.7,
3.3 of which were polymorphic among the safflower genotypes. To reveal genetic
relationships among the safflower genotypes, similarity matrix was calculated
and UPGMA method was used to construct a dendrogram. Mean similarity was 0.80
among the genotypes with a range of 0.56-0.91. Genotypes clustered within 2
groups. Gene diversity of the markers ranged between 0.17-0.48. These results
show POGP markers could be used to fingerprint to study genetic diversity of
safflower genotypes.

Supporting Institution

Süleyman Demirel Üniversitesi

Project Number

2485-YL-10

Thanks

The present study was supported by Süleyman Demirel University Scientific Research Unit under project number 2485-YL-10.

References

  • [1] P. F. Knowles, “Centers of plant diversity and conservation of crop germplasm: safflower,” Econ. Bot., 23, 324-329, 1969.
  • [2] H. Baydar, and O. Y. Gökmen, “Hybrid seed production in safflower (Carthamus tinctorius L.) following the induction of male sterility by gibberellic acid,” Plant Breed., 122, 459-461, 2003.
  • [3] M.D. Kaya, A. İpek, and A. Öztürk, “Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.),” Turk. J. Agric. For., 27, 221-227, 2003.
  • [4] Türkiye İstatistik Kurumu (TÜİK), 2017. Aspir Tarımına Ait İstatistikî Veriler. Erişim Tarihi: 02.10.2017. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001
  • [5] Food and Agriculture Organization of the United Nations (FAO), 2017. Aspir Tarımına Ait İstatistikî Veriler. Erişim Tarihi: 02.10.2017. http://www.fao.org/faostat/en/#data/QC
  • [6] J. E. Bowers, S. A. Pearl, and J. M. Burke, “Genetic mapping of Millions of SNPs in safflower (Carthamus tinctorius L.) via whole-genome Resequencing,” G3(Genes, Genomes, Genetics), 6, 2203-2211, 2016.
  • [7] S. D. Tanksley, and S. R. McCouch, “Seed banks and molecular maps: Unlocking genetic potential from the wild,” Science, 277, 1063-1066, 1997.
  • [8] L. Dajue, Z. Mingde, and R. V. Rao, Characterization and evaluation of safflower germplasm. Geological Publishing House: Beijing, 1993, pp. 260.
  • [9] N. Çamaş, C. Çırak, and E. Esendal, “Seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) grown in northern Turkey conditions,” OMÜ Ziraat Fakültesi Dergisi, 22, 98-104, 2007.
  • [10] B. Arslan, “The determination of oil content and fatty acid compositions of domestic and exotic safflower (Carthamus tinctorius L.) genotypes and their interactions,” J. Agron., 6, 415-420, 2007.
  • [11] F. Amini, G. Saeidi, and A. Arzani, “Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers,” Euphytica, 163, 21-30, 2008.
  • [12] D. Sehgal, and S. N. Raina, “Genotyping safflower (Carthamus tinctorius L.) cultivars by DNA fingerprinting,” Euphytica, 146, 67-76, 2005.
  • [13] Y. Yang, W. Wu, Y. Zheng, L. Chen, R. Liu, and C. Huang, “Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs),” Genet. Resour. Crop Ev., 54, 1043–1051, 2007.
  • [14] R. C. Johnson, T. Kisha, and M. A. Evans, “Characterizing safflower germplasm wit AFLP molecular markers,” Crop Sci., 47, 1728-1736, 2007.
  • [15] D. Sehgal, V. R. Rajpal, S. N. Raina, T. Sasanuma, and T. Sasakuma, “Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources,” Genetica, 135, 457–470, 2009.
  • [16] M. A. Chapman, J. Hvala, J. Strever, M. Matvienko, A. Kozik, R. W. Michelmore, S. Tang, S. J. Knaap, and J. M. Burke, “Development, polymorphism, and cross-taxon utility of EST-SSR markers from safflower (Carthamus tinctorius L.),” Theor. Appl. Genet., 120, 85-91, 2009.
  • [17] M. A. Chapman, J. Hvala, J. Strever, and J. M. Burke, “Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a near eastern origin and five centers of diversity,” Am. J. Bot., 97, 831–840, 2010.
  • [18] K. Yoshida, P. Kaothien, T. Matsui, A. Kawaoka, and A. Shinmyo, “Molecular biology and application of plant peroxidase genes,” Appl. Microbiol. Biotechno.l, 60, 665–670, 2003.
  • [19] F. Passardi, C. Cosio, C. Penel, and C. Dunand, “Peroxidases have more functions than a Swiss army knife,” Plant Cell. Rep., 24, 255–265, 2005.
  • [20] L. Zhang, S. K. Pond, and B. S. Gaut, “A survey of the molecular evolutionary dynamics of twenty-five multigene families from four taxa,” J. Mol. Evol., 52, 144-156, 2001.
  • [21] O. Gulsen, R. C. Shearman, T. M. Heng-Moss, N. Mutlu, D. J. Lee, and G. Sarath, “Peroxidase gene polymorphism in buffalograss and other grasses,” Crop Sci., 47, 767-774, 2007.
  • [22] O. Gulsen, S. Kaymak, S. Özongun, and A. Uzun, “Genetic analysis of Turkish apple germplasm using peroxidase gene based markers,” Sci. Hortic., 125, 368-373, 2010.
  • [23] N. Ocal, M. Akbulut, O. Gülşen, H. Yetişir, I. Solmaz, and N. Sarı, “Genetic diversity, population structure and linkage disequilibrium among watermelons based on peroxidase gene markers,” Sci. Hortic., 176, 151-161, 2014.
  • [24] A. Uzun, O. Gülşen, U. Seday, T. Yesiloğlu, and Y. Aka Kaçar, “Peroxidase gene based estimation of genetic relationships and population structure among Citrus spp. and their relatives,” Genet. Resour. Crop Ev., 61, 1307-1318, 2014.
  • [25] R. Akyavuz, B. Taskin, M. Koçak, and M. Yıldız, “Exploring the genetic variations and population structure of Turkish pepper (Capsicum annuum L.) genotypes based on peroxidase gene markers,” 3 Biotech, 8, 355, 2018.
  • [26] J. J. Doyle, and J. J. Doyle, “Isolation of plant DNA from fresh tissue,” Focus, 12, 13-15, 1990.
  • [27] F. J. Rohlf, “NTSYS-pc, Numerical taxonomy and multivariate analysis system,” Exeter Software, Setauket, NY, 1991.
  • [28] M. Abuzayed, N. El Dabba, A. Frary, and S. Doğanlar, “GDdom: an online tool for calculation of dominant marker gene diversity,” Biochem. Genet., 55,155-157, 2017.

Aspirde Genetik İlişkilerin Peroksidaz Genleri Kullanılarak Belirlenmesi

Year 2019, , 367 - 373, 30.11.2019
https://doi.org/10.29233/sdufeffd.612472

Abstract

Aspir (Carthamus tinctorius L.) önemli bir yağ
bitkisidir ve eski çağlardan beri Yakın Doğu’da kütürü yapılmaktadır. On beş
peroksidaz gen markörü (POGP) 6 farklı ülkeye ait 39 aspir genotipinde (33
çeşit ve 6 ıslah hattı) genetik çeşitliliği araştırmak için kullanılmıştır. On
dört POGP markörü aspirde polimorfizimler üretirken bir markör monomorfik
olarak bulunmuştur. POGP markörleri aspirde toplam 71 band üretmiş ve üretilen
bantlardan 50 tanesi polimorfik olarak bulunmuştur. Aspirde POGP markörü başına
üretilen ortalama band sayısı 4.7 iken, ortalama polimorfik band sayısı 3.3
olmuştur. Aspirde genetik akrabalık ilişkilerini ortaya çıkarmak için benzerlik
matrisi hesaplanmış ve UPGMA metodu ile dendrogram yapılmıştır. Aspir genotiplerinin
benzerlik oranları 0.59-0.91 arasında değişim göstermiş ve ortalama benzerlik
0.80 olarak bulunmuştur ve genotipler 2 grup altında toplanmıştır. Markörlerin
tespit ettiği gen çeşitliliği 0.17-0.48 arasında olmuştur. Mevcut sonuçlar,
aspirde genetik çeşitliliği çalışmak için parmak izi yönteminde POGP
markörlerinin kullanılabileceğini göstermektedir.

Özet: Aspir (Carthamus
tinctorius
L.) önemli bir yağ bitkisidir ve eski çağlardan beri Yakın
Doğu’da kütürü yapılmaktadır. On beş peroksidaz gen markörü (POGP) 6 farklı
ülkeye ait 39 aspir genotipinde (33 çeşit ve 6 ıslah hattı) genetic çeşitliliği
araştırmak için kullanılmıştır. On dört POGP markörü aspirde polimorfizimler
üretirken bir markör monomorfik olarak bulunmuştur. POGP marörleri aspirde
toplam 71 band üretmiş ve üretilen bantlardan 50 tanesi polimorfik olarak
bulunmuştur. Aspirde POGP markörü başına üretilen ortalama band sayısı 4.7
iken, ortalama polimorfik band sayısı 3.3 olmuştur. Aspirde genetik akrabalık
ilişkilerini ortaya çıkarmak için benzerlik matrisi hesaplanmış ve UPGMA metodu
ile dendrogram yapılmıştır. Aspir genotiplerinin benzerlik oranları 0.59-0.91
arasında değişim göstermiş ve ortalama benzerlik 0.80 olarak bulunmuştur ve
genotipler 2 grup altında toplanmıştır. Markörlerin tespit ettiği gen
çeşitliliği 0.17-0.48 arasında olmuştur. Mevcut sonuçlar, aspirde genetik
çeşitliliği çalışmak için parmak izi yönteminde POGP markörlerinin
kullanılabileceğini göstermektedir.



Project Number

2485-YL-10

References

  • [1] P. F. Knowles, “Centers of plant diversity and conservation of crop germplasm: safflower,” Econ. Bot., 23, 324-329, 1969.
  • [2] H. Baydar, and O. Y. Gökmen, “Hybrid seed production in safflower (Carthamus tinctorius L.) following the induction of male sterility by gibberellic acid,” Plant Breed., 122, 459-461, 2003.
  • [3] M.D. Kaya, A. İpek, and A. Öztürk, “Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.),” Turk. J. Agric. For., 27, 221-227, 2003.
  • [4] Türkiye İstatistik Kurumu (TÜİK), 2017. Aspir Tarımına Ait İstatistikî Veriler. Erişim Tarihi: 02.10.2017. http://www.tuik.gov.tr/PreTablo.do?alt_id=1001
  • [5] Food and Agriculture Organization of the United Nations (FAO), 2017. Aspir Tarımına Ait İstatistikî Veriler. Erişim Tarihi: 02.10.2017. http://www.fao.org/faostat/en/#data/QC
  • [6] J. E. Bowers, S. A. Pearl, and J. M. Burke, “Genetic mapping of Millions of SNPs in safflower (Carthamus tinctorius L.) via whole-genome Resequencing,” G3(Genes, Genomes, Genetics), 6, 2203-2211, 2016.
  • [7] S. D. Tanksley, and S. R. McCouch, “Seed banks and molecular maps: Unlocking genetic potential from the wild,” Science, 277, 1063-1066, 1997.
  • [8] L. Dajue, Z. Mingde, and R. V. Rao, Characterization and evaluation of safflower germplasm. Geological Publishing House: Beijing, 1993, pp. 260.
  • [9] N. Çamaş, C. Çırak, and E. Esendal, “Seed yield, oil content and fatty acid composition of safflower (Carthamus tinctorius L.) grown in northern Turkey conditions,” OMÜ Ziraat Fakültesi Dergisi, 22, 98-104, 2007.
  • [10] B. Arslan, “The determination of oil content and fatty acid compositions of domestic and exotic safflower (Carthamus tinctorius L.) genotypes and their interactions,” J. Agron., 6, 415-420, 2007.
  • [11] F. Amini, G. Saeidi, and A. Arzani, “Study of genetic diversity in safflower genotypes using agro-morphological traits and RAPD markers,” Euphytica, 163, 21-30, 2008.
  • [12] D. Sehgal, and S. N. Raina, “Genotyping safflower (Carthamus tinctorius L.) cultivars by DNA fingerprinting,” Euphytica, 146, 67-76, 2005.
  • [13] Y. Yang, W. Wu, Y. Zheng, L. Chen, R. Liu, and C. Huang, “Genetic diversity and relationships among safflower (Carthamus tinctorius L.) analyzed by inter-simple sequence repeats (ISSRs),” Genet. Resour. Crop Ev., 54, 1043–1051, 2007.
  • [14] R. C. Johnson, T. Kisha, and M. A. Evans, “Characterizing safflower germplasm wit AFLP molecular markers,” Crop Sci., 47, 1728-1736, 2007.
  • [15] D. Sehgal, V. R. Rajpal, S. N. Raina, T. Sasanuma, and T. Sasakuma, “Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctorius L.) world germplasm resources,” Genetica, 135, 457–470, 2009.
  • [16] M. A. Chapman, J. Hvala, J. Strever, M. Matvienko, A. Kozik, R. W. Michelmore, S. Tang, S. J. Knaap, and J. M. Burke, “Development, polymorphism, and cross-taxon utility of EST-SSR markers from safflower (Carthamus tinctorius L.),” Theor. Appl. Genet., 120, 85-91, 2009.
  • [17] M. A. Chapman, J. Hvala, J. Strever, and J. M. Burke, “Population genetic analysis of safflower (Carthamus tinctorius; Asteraceae) reveals a near eastern origin and five centers of diversity,” Am. J. Bot., 97, 831–840, 2010.
  • [18] K. Yoshida, P. Kaothien, T. Matsui, A. Kawaoka, and A. Shinmyo, “Molecular biology and application of plant peroxidase genes,” Appl. Microbiol. Biotechno.l, 60, 665–670, 2003.
  • [19] F. Passardi, C. Cosio, C. Penel, and C. Dunand, “Peroxidases have more functions than a Swiss army knife,” Plant Cell. Rep., 24, 255–265, 2005.
  • [20] L. Zhang, S. K. Pond, and B. S. Gaut, “A survey of the molecular evolutionary dynamics of twenty-five multigene families from four taxa,” J. Mol. Evol., 52, 144-156, 2001.
  • [21] O. Gulsen, R. C. Shearman, T. M. Heng-Moss, N. Mutlu, D. J. Lee, and G. Sarath, “Peroxidase gene polymorphism in buffalograss and other grasses,” Crop Sci., 47, 767-774, 2007.
  • [22] O. Gulsen, S. Kaymak, S. Özongun, and A. Uzun, “Genetic analysis of Turkish apple germplasm using peroxidase gene based markers,” Sci. Hortic., 125, 368-373, 2010.
  • [23] N. Ocal, M. Akbulut, O. Gülşen, H. Yetişir, I. Solmaz, and N. Sarı, “Genetic diversity, population structure and linkage disequilibrium among watermelons based on peroxidase gene markers,” Sci. Hortic., 176, 151-161, 2014.
  • [24] A. Uzun, O. Gülşen, U. Seday, T. Yesiloğlu, and Y. Aka Kaçar, “Peroxidase gene based estimation of genetic relationships and population structure among Citrus spp. and their relatives,” Genet. Resour. Crop Ev., 61, 1307-1318, 2014.
  • [25] R. Akyavuz, B. Taskin, M. Koçak, and M. Yıldız, “Exploring the genetic variations and population structure of Turkish pepper (Capsicum annuum L.) genotypes based on peroxidase gene markers,” 3 Biotech, 8, 355, 2018.
  • [26] J. J. Doyle, and J. J. Doyle, “Isolation of plant DNA from fresh tissue,” Focus, 12, 13-15, 1990.
  • [27] F. J. Rohlf, “NTSYS-pc, Numerical taxonomy and multivariate analysis system,” Exeter Software, Setauket, NY, 1991.
  • [28] M. Abuzayed, N. El Dabba, A. Frary, and S. Doğanlar, “GDdom: an online tool for calculation of dominant marker gene diversity,” Biochem. Genet., 55,155-157, 2017.
There are 28 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Makaleler
Authors

Ayşe Öznur Çankaya This is me 0000-0003-1387-0972

Muhammet Tonguç 0000-0003-1292-2910

Sercan Önder 0000-0002-8065-288X

Project Number 2485-YL-10
Publication Date November 30, 2019
Published in Issue Year 2019

Cite

IEEE A. Öznur Çankaya, M. Tonguç, and S. Önder, “Peroxidase Gene Based Genetic Relationships Among Safflower Genotypes”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 14, no. 2, pp. 367–373, 2019, doi: 10.29233/sdufeffd.612472.