Mamografi Sistemlerinde İlgi Alanı, Türev ve İnce Gruplama Seçimlerinin Modülasyon Transfer Fonksiyonunun Üzerine Etkileri
Year 2020,
, 23 - 35, 31.05.2020
Yiğit Ali Üncü
,
Hasan Özdoğan
Abstract
Bu çalışmada, mamografi sisteminin görüntü kalitesi matematiksel yöntemler ile ölçülmüştür. Mamografi sistemlerinde performans ölçümleri için uygulanan yeni yöntemler, bu sistemlerin görüntü kalitesinin sayısal olarak değerlendirilmesinde kullanılmıştır. Görüntüleme kalitesinin sayısal değerlendirilmesi, görsel değerlendirmelere göre daha objektif sonuçlar verdiğinden çalışma kapsamında sayısal değerlendirmeler üzerinde durulmuştur. Modülasyon transfer fonksiyonu (MTF) hesaplanmasında kenar görüntüleme metodu kullanılmış ve bu metodun kullanımında açı hesaplamaları yapılmıştır. Farklı ilgi alan seçimlerinde (ROI) kenar dağılım fonksiyonlarının (ESF) nasıl değiştiği gözlemlenmiş, farklı türev seçimlerinin çizgisel dağılım fonksiyonu (LSF) ve MTF üzerine etkisi ve ince gruplama (rebinning) işleminin ESF, LSF, MTF üzerine etkileri incelenmiştir. Bütün bu yöntemlerin hesaplamaları, MATLAB programı kullanılarak tasarlanıp gerçekleştirilmiştir.
Thanks
Bu çalışma Yiğit Ali Üncü’ nün yüksek lisans tezinden türetilmiştir. Yazarlar olarak, tez çalışmasının yürütülmesi sırasındaki katkılarından dolayı Dr. Özlem BİRGÜL’ e teşekkürü borç biliriz.
References
- [1] N. W. Marshall, “A comparison between objective and subjective image quality measurements for a full field digital mammography system,” Phys. Med. Biol., 51 (10), 2441, 2006.
- [2] A. Pascoal, C. P. Lawinski, I. Honey, and P. Blake, “Evaluation of a software package for automated quality assessment of contrast detail images - Comparison with subjective visual assessment,” Phys. Med. Biol., 50 (23), 5743, 2005.
- [3] N. W. Marshall, “Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems,” Phys. Med. Biol., 52 (18), 5545, 2007.
- [4] International Electrotechnical Commision., IEC, and Din, “Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1: Determination of the detective quantum efficiency,” 2003.
- [5] International Electrotechnical Commission, “62220-1-1:2015 Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1-1: Determination of the detective quantum efficiency - Detectors used in radiographic imaging,” 2015.
- [6] A. K. Carton et al., “Validation of MTF measurement for digital mammography quality control,” Med. Phys., 32 (6Part1), 1684-1695, 2005.
- [7] E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys., 25 (1), 102-113, 1998.
- [8] E. Buhr, S. Günther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image,” Med. Phys., 30 (9), 2323-2331, 2003.
- [9] E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys., 30 (4), 608-622, 2003.
- [10] J. Scharcanski and A. N. Venetsanopoulos, “Edge detection of color images using directional operators,” IEEE Trans. Circuits Syst. Video Technol., 7 (2), 397-401, 1997.
- [11] E. Samei, N. T. Ranger, J. T. Dobbins, and Y. Chen, “Intercomparison of methods for image quality characterization. I. Modulation transfer function,” Med. Phys., 33 (5), 1454-1465, 2006.
- [12] N. W. Marshall, “An examination of automatic exposure control regimes for two digital radiography systems,” Phys. Med. Biol., 54 (15), 4645, 2009.
- [13] J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys., 39 (10), 6148-6160, 2012.
The Effects of Region of Interest, Differentiation Methods and Rebinning Sizes on the Modulation Transfer Function of a Mammography Systems
Year 2020,
, 23 - 35, 31.05.2020
Yiğit Ali Üncü
,
Hasan Özdoğan
Abstract
In this study, the image quality of the mammography system was measured by mathematical methods. New methods for performance measurements have been used to quantitatively evaluate the image quality in mammography systems. Since the quantitative evaluation of imaging quality gives more objective results than evaluation of visual, numerical evaluations have been emphasized within the scope of the study. The Slanted-edge method was used for the calculation of modulation transfer function (MTF), and angular calculations were made in the use of this method. On effect of different region-of-interest (ROI) selection on edge spread function (ESF), use of different differentiation methods for line spread function (LSF), MTF, and on the effect of different rebinning sizes on ESF, LSF and MTF were investigated. All these methods consist of the calculation were designed to perform using the MATLAB program.
References
- [1] N. W. Marshall, “A comparison between objective and subjective image quality measurements for a full field digital mammography system,” Phys. Med. Biol., 51 (10), 2441, 2006.
- [2] A. Pascoal, C. P. Lawinski, I. Honey, and P. Blake, “Evaluation of a software package for automated quality assessment of contrast detail images - Comparison with subjective visual assessment,” Phys. Med. Biol., 50 (23), 5743, 2005.
- [3] N. W. Marshall, “Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems,” Phys. Med. Biol., 52 (18), 5545, 2007.
- [4] International Electrotechnical Commision., IEC, and Din, “Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1: Determination of the detective quantum efficiency,” 2003.
- [5] International Electrotechnical Commission, “62220-1-1:2015 Medical electrical equipment - Characteristics of digital X-ray imaging devices - Part 1-1: Determination of the detective quantum efficiency - Detectors used in radiographic imaging,” 2015.
- [6] A. K. Carton et al., “Validation of MTF measurement for digital mammography quality control,” Med. Phys., 32 (6Part1), 1684-1695, 2005.
- [7] E. Samei, M. J. Flynn, and D. A. Reimann, “A method for measuring the presampled MTF of digital radiographic systems using an edge test device,” Med. Phys., 25 (1), 102-113, 1998.
- [8] E. Buhr, S. Günther-Kohfahl, and U. Neitzel, “Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image,” Med. Phys., 30 (9), 2323-2331, 2003.
- [9] E. Samei and M. J. Flynn, “An experimental comparison of detector performance for direct and indirect digital radiography systems,” Med. Phys., 30 (4), 608-622, 2003.
- [10] J. Scharcanski and A. N. Venetsanopoulos, “Edge detection of color images using directional operators,” IEEE Trans. Circuits Syst. Video Technol., 7 (2), 397-401, 1997.
- [11] E. Samei, N. T. Ranger, J. T. Dobbins, and Y. Chen, “Intercomparison of methods for image quality characterization. I. Modulation transfer function,” Med. Phys., 33 (5), 1454-1465, 2006.
- [12] N. W. Marshall, “An examination of automatic exposure control regimes for two digital radiography systems,” Phys. Med. Biol., 54 (15), 4645, 2009.
- [13] J. R. Wells and J. T. Dobbins, “Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects,” Med. Phys., 39 (10), 6148-6160, 2012.