Research Article
BibTex RIS Cite

Electrochemical and Structural Behavior of Bi Doped ZnO Materials Obtained with Solvothermal Synthesis Method

Year 2021, , 147 - 156, 27.05.2021
https://doi.org/10.29233/sdufeffd.886309

Abstract

In this study, Bi-doped ZnO and undoped ZnO nanomaterials have been synthesized by the solvothermal reaction method. The effect of Bi doping on the structural and electrochemical properties has been investigated by X-ray diffractions (XRD), X-ray photoelectron spectroscopy (XPS) and, scanning electron microscopy (SEM). As seen from X-ray diffraction spectra performed on the bulk material, it has been clearly observed that both Bi doping changed the preferred orientation of the nanopowder as (101) and Bi+3 ions were expectedly entered the lattice. Furthermore, this result has been supported by photoelectron spectra. Scanning electron microscopy images have shown the shapes and distributions of nanostructures of the samples. As a result, it is thought that Bi doping is suitable for obtaining p-type conductivity in ZnO materials for the experimental processes we applied to samples in the study.

Supporting Institution

Çukurova University

Project Number

FEF2013D30

Thanks

This study has been financially supported by the Department of Scientific Research Project (BAP) of Çukurova University as project number FEF2013D30.

References

  • [1] D. C. Look, "Recent advances in ZnO materials and devices," Mater. Sci. Eng., B, 80, 383-387, 2001.
  • [2] H. Kim, J. S. Horwitz, W. H. Kim, A. J. Makinen, Z. H. Kafafi, and D. B. Chrisey, "Doped ZnO thin films as anode materials for organic light-emitting diodes," Thin Solid Films, 420, 539-543, 2002.
  • [3] C. Yuen, S. F. Yu, S. P. Lau, and G. C. K. Chen, "Design and fabrication of ZnO light-emitting devices using filtered cathodic vacuum arc technique," J. Cryst.Growth, 287, 204-212, 2006.
  • [4] F. C. M. Vandepol, "Thin Film ZnO - properties and applications," Am. Ceram. Soc. Bull, 69, 1959-1965, 1990.
  • [5] R.-Y. Yang, M.-H. Weng, C.-T. Pan, C.-M. Hsiung, and C.-C. Huang, "Low-temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology," Appl. Surf. Sci., 257, 7119-7122, 2011.
  • [6] K. Chung, C.-H. Lee, and G.-C. Yi, "Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices," Sci., 330, 655-657, 2010.
  • [7] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, et al., "Room-temperature ultraviolet nanowire nanolasers," Sci., 292, 1897-1899, 2001.
  • [8] S. B. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO," Phys. Rev. B, 63 (7), 075205, 2001.
  • [9] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, "Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide," Phys. Rev. Lett., 92 (15), 155504, 2004.
  • [10] P. Sikam, C. Sararat, P. Moontragoon, T. Kaewmaraya, and S. Maensiri, "Enhanced thermoelectric properties of N-doped ZnO and SrTiO3: A first-principles study," Appl. Surf. Sci., 446, 47-58, 2018.
  • [11] M. Moalem-Banhangi, N. Ghaeni, and S. Ghasemi, "Saffron derived carbon quantum dot/N-doped ZnO/fulvic acid nanocomposite for sonocatalytic degradation of methylene blue," Synth. Met., 271, 116626, 2021.
  • [12] S. Swathi, R. Yuvakkumar, G. Ravi, E. S. Babu, D. Velauthapillai, and S. A. Alharbi, "Morphological exploration of chemical vapor–deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting," Ceram. Int., 47 (5), 6521-6527, 2021.
  • [13] S. Y. Wakhare and M. D. Deshpande, "Structural, electronic and optical properties of metalloid element (B, Si, Ge, As, Sb, and Te) doped g-ZnO monolayer: A DFT study," J. Mol. Graph. Model., 101, 107753, 2020.
  • [14] C.-Q. Luo, S.-C. Zhu, C. Xu, S. Zhou, C.-H. Lam, and F. C.-C. Ling, "Room temperature ferromagnetism in Sb doped ZnO," J. Magn. Magn. Mater., 529, 167908, 2021.
  • [15] H. Zhang, X. Y. Ma, Y. J. Ji, J. Xu, and D. R. Yang, "Single crystalline US nanorods fabricated by a novel hydrothermal method," Chem. Phys. Lett., 377, 654-657, 2003.
  • [16] H. Zhang, Y. J. Ji, X. Y. Ma, J. Xu, and D. R. Yang, "Long Bi2S3 nanowires prepared by a simple hydrothermal method," Nanotechnology, 14, 974-977, 2003.
  • [17] Y. Jiang, Y. Wu, S. Y. Zhang, C. Y. Xu, W. C. Yu, Y. Xie, et al., "A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature," J. Am. Chem., 122, 12383-12384, 2000.
  • [18] J. H. Zhan, X. G. Yang, D. W. Wang, S. D. Li, Y. Xie, Y. N. Xia, et al., "Polymer-controlled growth of CdS nanowires," Adv. Mater., 12 (8), 1348-1351, 2000.
  • [19] F. Chouikh, Y. Beggah, and M. S. Aida, "Optical and electrical properties of Bi doped ZnO thin films deposited by ultrasonic spray pyrolysis," J. Mater. Sci.: Mater. Electron, 22, 499-505, 2011.
  • [20] N. S. Kumar, K. V. Bangera, C. Anandan, and G. K. Shivakumar, "Properties of ZnO:Bi thin films prepared by spray pyrolysis technique," J. Alloy. Compd., 578, 613-619, 2013.
  • [21] C. H. Lee, K. S. Lim, and J. S. Song, "Highly textured ZnO thin films doped with indium prepared by the pyrosol method," Sol. Energy Mater. Sol. Cells, 43, 37-45, 1996.
  • [22] M. Jiang, X. Liu, and H. Wang, "Conductive and transparent Bi-doped ZnO thin films prepared by rf magnetron sputtering," Surf. Coat. Technol., 203, 3750-3753, 2009.
  • [23] T. Ait Ahcene, C. Monty, J. Kouam, A. Thorel, G. Petot-Ervas, and A. Djemel, "Preparation by solar physical vapor deposition (SPVD) and nanostructural study of pure and Bi doped ZnO nanopowders," J. Eur. Ceram. Soc., 27, 3413-3424, 2007.
  • [24] E. F. Keskenler, S. Aydin, G. Turgut, and S. Dogan, "Optical and structural properties of bismuth doped ZnO thin films by sol-gel method: Urbach rule as a function of crystal defects," Acta Phys. Polon. A, 126, 782-786, 2014.
  • [25] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Phys Rev., 56, 978-982, 1939.
  • [26] K. Wu, Z. Jia, L. Zhou, S. Yuan, and J. Cui, "Study on the effect of methanol on the morphology and optical properties of ZnO," Optik, 205, 164250, 2020.
  • [27] X. Xu, Y. Shen, N. Xu, W. Hu, J. Lai, Z. Ying, et al., "Large-sized-mismatched group-V element doped ZnO films fabricated on silicon substrates by pulsed laser deposition," Vacuum, 84, 1306-1309, 2010.
  • [28] V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, and A. Goswami, "Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy," J. Electron. Spectrosc., 25, 181-189, 1982.
  • [29] J. B. Zhong, J. Z. Li, Y. Lu, X. Y. He, J. Zeng, W. Hu, et al., "Fabrication of Bi 3+-doped ZnO with enhanced photocatalytic performance," Appl. Surf. Sci., 258, 4929-4933, 2012.

Solvotermal Sentezleme Yöntemi ile Elde Edilen Bi Katkılı ZnO Malzemelerinin Elektrokimyasal ve Yapısal Davranışı

Year 2021, , 147 - 156, 27.05.2021
https://doi.org/10.29233/sdufeffd.886309

Abstract

Bu çalışmada, Bi katkılı ZnO ve katkısız ZnO nanomateryaller solvotermal reaksiyon yöntemi ile sentezlenmiştir. Bi katkısının yapısal ve elektrokimyasal özellikler üzerindeki etkisi X-ışını kırınımları (XRD), X-ışını fotoelektron spektroskopisi (XPS) ve taramalı elektron mikroskobu (SEM) ile araştırılmıştır. Katı malzeme üzerinde gerçekleştirilen X-ışını kırınım spektrumlarından görüldüğü üzere, hem Bi katkılama nanotozun tercih edilen yöneliminin (101) olarak değiştirdiğini hem de Bi+3 iyonlarının beklenen şekilde kristal kafese girdiği açıkça gözlemlenmişdir. Ayrıca, bu sonuç fotoelektron spektrumları ile desteklenmiştir. Taramalı elektron mikroskobu görüntüleri, numunelerin nanoyapılarının şekillerini ve dağılımlarını göstermiştir. Sonuç olarak, çalışmada numunelere uyguladığımız deneysel işlemler için Bi katkılamanın ZnO malzemelerde p tipi iletkenliğin elde edilmesi bakımından uygun olduğu düşünülmektedir.

Project Number

FEF2013D30

References

  • [1] D. C. Look, "Recent advances in ZnO materials and devices," Mater. Sci. Eng., B, 80, 383-387, 2001.
  • [2] H. Kim, J. S. Horwitz, W. H. Kim, A. J. Makinen, Z. H. Kafafi, and D. B. Chrisey, "Doped ZnO thin films as anode materials for organic light-emitting diodes," Thin Solid Films, 420, 539-543, 2002.
  • [3] C. Yuen, S. F. Yu, S. P. Lau, and G. C. K. Chen, "Design and fabrication of ZnO light-emitting devices using filtered cathodic vacuum arc technique," J. Cryst.Growth, 287, 204-212, 2006.
  • [4] F. C. M. Vandepol, "Thin Film ZnO - properties and applications," Am. Ceram. Soc. Bull, 69, 1959-1965, 1990.
  • [5] R.-Y. Yang, M.-H. Weng, C.-T. Pan, C.-M. Hsiung, and C.-C. Huang, "Low-temperature deposited ZnO thin films on the flexible substrate by cathodic vacuum arc technology," Appl. Surf. Sci., 257, 7119-7122, 2011.
  • [6] K. Chung, C.-H. Lee, and G.-C. Yi, "Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices," Sci., 330, 655-657, 2010.
  • [7] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, et al., "Room-temperature ultraviolet nanowire nanolasers," Sci., 292, 1897-1899, 2001.
  • [8] S. B. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO," Phys. Rev. B, 63 (7), 075205, 2001.
  • [9] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, "Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide," Phys. Rev. Lett., 92 (15), 155504, 2004.
  • [10] P. Sikam, C. Sararat, P. Moontragoon, T. Kaewmaraya, and S. Maensiri, "Enhanced thermoelectric properties of N-doped ZnO and SrTiO3: A first-principles study," Appl. Surf. Sci., 446, 47-58, 2018.
  • [11] M. Moalem-Banhangi, N. Ghaeni, and S. Ghasemi, "Saffron derived carbon quantum dot/N-doped ZnO/fulvic acid nanocomposite for sonocatalytic degradation of methylene blue," Synth. Met., 271, 116626, 2021.
  • [12] S. Swathi, R. Yuvakkumar, G. Ravi, E. S. Babu, D. Velauthapillai, and S. A. Alharbi, "Morphological exploration of chemical vapor–deposited P-doped ZnO nanorods for efficient photoelectrochemical water splitting," Ceram. Int., 47 (5), 6521-6527, 2021.
  • [13] S. Y. Wakhare and M. D. Deshpande, "Structural, electronic and optical properties of metalloid element (B, Si, Ge, As, Sb, and Te) doped g-ZnO monolayer: A DFT study," J. Mol. Graph. Model., 101, 107753, 2020.
  • [14] C.-Q. Luo, S.-C. Zhu, C. Xu, S. Zhou, C.-H. Lam, and F. C.-C. Ling, "Room temperature ferromagnetism in Sb doped ZnO," J. Magn. Magn. Mater., 529, 167908, 2021.
  • [15] H. Zhang, X. Y. Ma, Y. J. Ji, J. Xu, and D. R. Yang, "Single crystalline US nanorods fabricated by a novel hydrothermal method," Chem. Phys. Lett., 377, 654-657, 2003.
  • [16] H. Zhang, Y. J. Ji, X. Y. Ma, J. Xu, and D. R. Yang, "Long Bi2S3 nanowires prepared by a simple hydrothermal method," Nanotechnology, 14, 974-977, 2003.
  • [17] Y. Jiang, Y. Wu, S. Y. Zhang, C. Y. Xu, W. C. Yu, Y. Xie, et al., "A catalytic-assembly solvothermal route to multiwall carbon nanotubes at a moderate temperature," J. Am. Chem., 122, 12383-12384, 2000.
  • [18] J. H. Zhan, X. G. Yang, D. W. Wang, S. D. Li, Y. Xie, Y. N. Xia, et al., "Polymer-controlled growth of CdS nanowires," Adv. Mater., 12 (8), 1348-1351, 2000.
  • [19] F. Chouikh, Y. Beggah, and M. S. Aida, "Optical and electrical properties of Bi doped ZnO thin films deposited by ultrasonic spray pyrolysis," J. Mater. Sci.: Mater. Electron, 22, 499-505, 2011.
  • [20] N. S. Kumar, K. V. Bangera, C. Anandan, and G. K. Shivakumar, "Properties of ZnO:Bi thin films prepared by spray pyrolysis technique," J. Alloy. Compd., 578, 613-619, 2013.
  • [21] C. H. Lee, K. S. Lim, and J. S. Song, "Highly textured ZnO thin films doped with indium prepared by the pyrosol method," Sol. Energy Mater. Sol. Cells, 43, 37-45, 1996.
  • [22] M. Jiang, X. Liu, and H. Wang, "Conductive and transparent Bi-doped ZnO thin films prepared by rf magnetron sputtering," Surf. Coat. Technol., 203, 3750-3753, 2009.
  • [23] T. Ait Ahcene, C. Monty, J. Kouam, A. Thorel, G. Petot-Ervas, and A. Djemel, "Preparation by solar physical vapor deposition (SPVD) and nanostructural study of pure and Bi doped ZnO nanopowders," J. Eur. Ceram. Soc., 27, 3413-3424, 2007.
  • [24] E. F. Keskenler, S. Aydin, G. Turgut, and S. Dogan, "Optical and structural properties of bismuth doped ZnO thin films by sol-gel method: Urbach rule as a function of crystal defects," Acta Phys. Polon. A, 126, 782-786, 2014.
  • [25] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Phys Rev., 56, 978-982, 1939.
  • [26] K. Wu, Z. Jia, L. Zhou, S. Yuan, and J. Cui, "Study on the effect of methanol on the morphology and optical properties of ZnO," Optik, 205, 164250, 2020.
  • [27] X. Xu, Y. Shen, N. Xu, W. Hu, J. Lai, Z. Ying, et al., "Large-sized-mismatched group-V element doped ZnO films fabricated on silicon substrates by pulsed laser deposition," Vacuum, 84, 1306-1309, 2010.
  • [28] V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, and A. Goswami, "Characterisation of thin films of bismuth oxide by X-ray photoelectron spectroscopy," J. Electron. Spectrosc., 25, 181-189, 1982.
  • [29] J. B. Zhong, J. Z. Li, Y. Lu, X. Y. He, J. Zeng, W. Hu, et al., "Fabrication of Bi 3+-doped ZnO with enhanced photocatalytic performance," Appl. Surf. Sci., 258, 4929-4933, 2012.
There are 29 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Nazmi Sedefoğlu 0000-0001-5364-7375

Hamide Kavak 0000-0002-9810-2640

Project Number FEF2013D30
Publication Date May 27, 2021
Published in Issue Year 2021

Cite

IEEE N. Sedefoğlu and H. Kavak, “Electrochemical and Structural Behavior of Bi Doped ZnO Materials Obtained with Solvothermal Synthesis Method”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 1, pp. 147–156, 2021, doi: 10.29233/sdufeffd.886309.