Research Article
BibTex RIS Cite

Study on the Dependence of Energy Resolution on Reflector Material for Inorganic Crystal Scintillators Using the Geant4

Year 2021, , 237 - 245, 27.05.2021
https://doi.org/10.29233/sdufeffd.908424

Abstract

The scintillator has played a primary role as the ideal device for the detection and measurement of particles and radiation in modern physics. With the development of experimental physics, the demand for new improved scintillating materials for several types of applications has kept increasing. High efficiency, fast scintillation and good energy resolution are among the most desired specifications as to a good scintillator. Yet, a variety of scintillators can be preferred depending on the precise specifications of the application considered. If the case is that the detection of gamma rays and high-energy electrons or positrons, inorganic crystals are exceptionally suitable scintillator because highly intense light outputs and the strong stopping power enable these type of crystals to provide better energy resolution among all scintillators. In this study, a scintillation detector consisting of inorganic crystal scintillator material (NaI:Tl and CsI:Tl) was modeled with the help of Geant4 scientific toolkit to determine if the energy resolution of the inorganic crystal scintillator detector is dependent on crystalline size and reflector material. In each simulation, different sized crystal covered with a variety of reflector type was exposed to the same energy gamma radiation; the resulting energy spectrum was evaluated and compared to others obtained.

References

  • [1] S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, and M. K. Klintenberg, “The quest for the ideal inorganic scintillator,” in Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505 (1-2), 111-117, 2003.
  • [2] T. Yanagida, “Inorganic scintillating materials and scintillation detectors,” Proceedings of the Japan Academy Series B: Physical and Biological Sciences, Japan Academy , 94 (2), 75-97, 2018.
  • [3] G. F. Knoll, Radiation Detection and Measurement, 4th ed. Hoboken, N.J: Wiley, 2010. [4] M. J. Weber, “Inorganic scintillators: Today and tomorrow,” J. Lumin., 100 (1-4), 35–45, 2002.
  • [5] P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, and C. Pedrini, “Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering” in Particle Acceleration and Detection, 2nd ed., A. Chao, T. Kondo, C.W. Fabjan, F. Ruggiero and R. Heuer Ed. New York: Springer, 2017, pp. 1–261.
  • [6] P. J. Ouseph, Introduction to Nuclear Radiation Detectors. Boston, MA: Springer US, 1975.
  • [7] D. S. McGregor, “Materials for Gamma-Ray Spectrometers: Inorganic Scintillators,” Annu. Rev. Mater. Res., 48 (1), 245–277, 2018.
  • [8] L. Cerrito, Graduate Texts in Physics Radiation and Detectors. 2017.
  • [9] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments. Springer Berlin Heidelberg, 1994.
  • [10] C. Gongyin and M. Belbot, “Improving energy resolution of scintillation detectors,” IEEE Nuclear Science Symposium Conference Record, 1, 235–238, 2005.
  • [11] M. Moszyński et al., “Energy resolution of scintillation detectors,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 805, 25–35, 2016.
  • [12] S. Agostinelli et al., “GEANT4 - A simulation toolkit,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 506 (3), 250–303, 2003.
  • [13] R. Brun and F. Rademakers, “ROOT - An object oriented data analysis framework,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 389 (1-2), 81–86, 1997.
  • [14] D. Wahl, V. B. Mikhailik, and H. Kraus, “The Monte-Carlo refractive index matching technique for determining the input parameters for simulation of the light collection in scintillating crystals,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 570 (3), 529–535, 2007.
  • [15] S. E. Derenzo and J. K. Riles, “Monte carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes,” IEEE Trans. Nucl. Sci., 29 (1), 1, 191–195, 1982.
  • [16] S. Xie et al., “Methods to Improve Light Transport Efficiency in LYSO Crystals Based on Characteristics of Optical Reflectance,” IEEE Trans. Nucl. Sci., 66 (9), 2100–2106, 2019.
  • [17] F. Nishikido, N. Inadama, E. Yoshida, H. Murayama, and T. Yamaya, “Optimization of the refractive index of a gap material used for the 4-layer DOI detector,” IEEE Trans. Nucl. Sci., 61 (3), 1066–1073, 2014.
  • [18] K. Inoue et al., “Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs,” in Radiation Physics and Chemistry, 58 (5-6), 763–766, 2000.
  • [19] K. Igashira, D. Nakauchi, T. Ogawa, T. Kato, N. Kawaguchi, and T. Yanagida, “Effects of dopant concentration in Eu-doped Ca2MgSi2O7 single crystalline scintillators,” Mater. Res. Bull., 135, 2021.
  • [20] K. Takahashi, H. Kimura, D. Nakauchi, T. Kato, N. Kawaguchi, and T. Yanagida, “Tl-concentration dependence of scintillation properties in Tl-doped CsBr single crystals,” Jpn. J. Appl. Phys., 59 (12), 122005, 2020.
  • [21] P. Schotanus, R. Kamermans, and P. Dorenbos, “Scintillation characteristics of pure and T1-doped CsI crystals,” IEEE Trans. Nucl. Sci., 37 (2), 177–182, 1990.
  • [22] M. E. Globus, B. V. Grinyov, and M. A. Ratner, “Effect of crystal shape, size and reflector type on operation characteristics of gamma-radiation detectors based on CsI(Tl) and CsI(Na) scintillators,” IEEE Nuclear Science Symposium & Medical Imaging Conference, 2, 724–728, 1996.
  • [23] H. Ishibashi, S. Akiyama, and M. Ishii, “Effect of surface roughness and crystal shape on performance of bismuth germanate scintillators,” Jpn. J. Appl. Phys., 25 (9), 1435–1438, 1986.

Geant4 ile İnorganik Kristal Sintilatörler için Enerji Çözünürlüğünün Reflektör Malzemesine Bağımlılığı Üzerine Çalışma

Year 2021, , 237 - 245, 27.05.2021
https://doi.org/10.29233/sdufeffd.908424

Abstract

Sintilatör, modern fizikte parçacıkların ve radyasyonun saptanması ve ölçülmesi için ideal bir cihaz olarak birincil bir rol oynamıştır. Deneysel fiziğin gelişmesiyle birlikte, çeşitli uygulama türleri için yeni geliştirilmiş parıldayan malzemelere olan talep artmaya devam etti. İyi bir sintilatör için yüksek verimlilik, hızlı parıldama ve iyi enerji çözünürlüğü en çok istenen özellikler arasındadır. Yine de, dikkate alınan uygulamanın kesin özelliklerine bağlı olarak çeşitli sintilatörler tercih edilebilir. Durum, gama ışınlarının ve yüksek enerjili elektronların veya pozitronların tespiti ise, inorganik kristaller son derece uygun sintilatördür çünkü yüksek yoğunluklu ışık çıkışları ve güçlü durdurma gücü, bu tür kristallerin tüm sintilatörler arasında daha iyi enerji çözünürlüğü sağlamasını sağlar. Bu çalışmada, inorganik kristal sintilatör dedektörünün enerji çözünürlüğünün kristal boyutuna bağlı olup olmadığını belirlemek için inorganik kristal sintilatör materyalinden (NaI:Tl ve CsI:Tl) oluşan bir sintilasyon dedektörü Geant4 bilimsel araç kiti yardımıyla modellenmiştir. Her simülasyonda, çeşitli reflektör tipi ile kaplanmış farklı büyüklükteki kristal aynı enerji gama radyasyonuna maruz bırakılmış, elde edilen enerji spektrumu değerlendirilmiş ve elde edilen diğerleriyle karşılaştırılmıştır.

References

  • [1] S. E. Derenzo, M. J. Weber, E. Bourret-Courchesne, and M. K. Klintenberg, “The quest for the ideal inorganic scintillator,” in Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 505 (1-2), 111-117, 2003.
  • [2] T. Yanagida, “Inorganic scintillating materials and scintillation detectors,” Proceedings of the Japan Academy Series B: Physical and Biological Sciences, Japan Academy , 94 (2), 75-97, 2018.
  • [3] G. F. Knoll, Radiation Detection and Measurement, 4th ed. Hoboken, N.J: Wiley, 2010. [4] M. J. Weber, “Inorganic scintillators: Today and tomorrow,” J. Lumin., 100 (1-4), 35–45, 2002.
  • [5] P. Lecoq, A. Annenkov, A. Gektin, M. Korzhik, and C. Pedrini, “Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering” in Particle Acceleration and Detection, 2nd ed., A. Chao, T. Kondo, C.W. Fabjan, F. Ruggiero and R. Heuer Ed. New York: Springer, 2017, pp. 1–261.
  • [6] P. J. Ouseph, Introduction to Nuclear Radiation Detectors. Boston, MA: Springer US, 1975.
  • [7] D. S. McGregor, “Materials for Gamma-Ray Spectrometers: Inorganic Scintillators,” Annu. Rev. Mater. Res., 48 (1), 245–277, 2018.
  • [8] L. Cerrito, Graduate Texts in Physics Radiation and Detectors. 2017.
  • [9] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments. Springer Berlin Heidelberg, 1994.
  • [10] C. Gongyin and M. Belbot, “Improving energy resolution of scintillation detectors,” IEEE Nuclear Science Symposium Conference Record, 1, 235–238, 2005.
  • [11] M. Moszyński et al., “Energy resolution of scintillation detectors,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 805, 25–35, 2016.
  • [12] S. Agostinelli et al., “GEANT4 - A simulation toolkit,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 506 (3), 250–303, 2003.
  • [13] R. Brun and F. Rademakers, “ROOT - An object oriented data analysis framework,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 389 (1-2), 81–86, 1997.
  • [14] D. Wahl, V. B. Mikhailik, and H. Kraus, “The Monte-Carlo refractive index matching technique for determining the input parameters for simulation of the light collection in scintillating crystals,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., 570 (3), 529–535, 2007.
  • [15] S. E. Derenzo and J. K. Riles, “Monte carlo calculations of the optical coupling between bismuth germanate crystals and photomultiplier tubes,” IEEE Trans. Nucl. Sci., 29 (1), 1, 191–195, 1982.
  • [16] S. Xie et al., “Methods to Improve Light Transport Efficiency in LYSO Crystals Based on Characteristics of Optical Reflectance,” IEEE Trans. Nucl. Sci., 66 (9), 2100–2106, 2019.
  • [17] F. Nishikido, N. Inadama, E. Yoshida, H. Murayama, and T. Yamaya, “Optimization of the refractive index of a gap material used for the 4-layer DOI detector,” IEEE Trans. Nucl. Sci., 61 (3), 1066–1073, 2014.
  • [18] K. Inoue et al., “Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs,” in Radiation Physics and Chemistry, 58 (5-6), 763–766, 2000.
  • [19] K. Igashira, D. Nakauchi, T. Ogawa, T. Kato, N. Kawaguchi, and T. Yanagida, “Effects of dopant concentration in Eu-doped Ca2MgSi2O7 single crystalline scintillators,” Mater. Res. Bull., 135, 2021.
  • [20] K. Takahashi, H. Kimura, D. Nakauchi, T. Kato, N. Kawaguchi, and T. Yanagida, “Tl-concentration dependence of scintillation properties in Tl-doped CsBr single crystals,” Jpn. J. Appl. Phys., 59 (12), 122005, 2020.
  • [21] P. Schotanus, R. Kamermans, and P. Dorenbos, “Scintillation characteristics of pure and T1-doped CsI crystals,” IEEE Trans. Nucl. Sci., 37 (2), 177–182, 1990.
  • [22] M. E. Globus, B. V. Grinyov, and M. A. Ratner, “Effect of crystal shape, size and reflector type on operation characteristics of gamma-radiation detectors based on CsI(Tl) and CsI(Na) scintillators,” IEEE Nuclear Science Symposium & Medical Imaging Conference, 2, 724–728, 1996.
  • [23] H. Ishibashi, S. Akiyama, and M. Ishii, “Effect of surface roughness and crystal shape on performance of bismuth germanate scintillators,” Jpn. J. Appl. Phys., 25 (9), 1435–1438, 1986.
There are 22 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Murat Dağ 0000-0002-0503-6067

Publication Date May 27, 2021
Published in Issue Year 2021

Cite

IEEE M. Dağ, “Study on the Dependence of Energy Resolution on Reflector Material for Inorganic Crystal Scintillators Using the Geant4”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 1, pp. 237–245, 2021, doi: 10.29233/sdufeffd.908424.