Research Article
BibTex RIS Cite

Effect of Substrate Temperatures on Structural and Optical Properties of ZnO Thin Films Produced by Ultrasonic Spray Pyrolysis

Year 2021, , 169 - 178, 27.05.2021
https://doi.org/10.29233/sdufeffd.911477

Abstract

In this study, ZnO thin films were deposited at three different temperatures of 350, 400, and 450 °C by the ultrasonic spray pyrolysis method. Zinc acetate dihydrate (Zn(CH3COO)2.2H2O) was used as a zinc source in the production of ZnO thin film. XRD analysis confirmed that the ZnO thin films are in nano-sized hexagonal structure and the dominant peak position belongs the plane of (100). The crystal grain size was calculated using the Debye-Scherrer formula and found between 324.7-442.3 Å. When SEM surface images are examined, it is seen that ZnO thin films have a homogeneous structure and thicknesses vary between ~253-286 nm from SEM cross-section. The surface roughness of the films was examined with AFM, and the surface roughness values were obtained in the range of 23.00-43.44 nm. From the UV spectra of ZnO thin films, optical transmittance was found to be over 80%, and the forbidden bandgap energies in-between 3.13-3.26 eV.

References

  • [1] C. H. Lai, Z. Y. Lee, S. C. Lin, and Y. H. Chuang, “Al-doped ZnO transparent conducting glass with an IGZO buffer layer for dye-sensitized solar cells,” IEEE J Photovolt, 10 (3), 795-802, 2020.
  • [2] A. K. Sahoo, C. S. Yang, O. Wada, and C. L. Pan, “Twisted nematic liquid crystal based terahertz phase shifter with crossed ındium tin oxide finger type electrodes,” IEEE Trans. Terahertz Sci. Technol, 9 (4), 399-408, 2019.
  • [3] D. Saikia, and R. Sarma, “A comparative study of the influence of nickel oxide layer on the FTO surface of organic light emitting diode,” Indian J. Phys., 92 (3), 307-313, 2018.
  • [4] T. Kawashima, H. Matsui, and N. Tanabe, “New Transparent Conductive Films: FTO Coated ITO,” Thin Solid Films, 445 (2), 241-244, 2003.
  • [5] D. A. Keller, H. N. Barad, E. Rosh-Hodesh, A. Zaban, and D. Cahen, “Can fluorine-doped tin oxide, FTO, be more like indium-doped tin oxide, ITO? Reducing FTO surface roughness by introducing additional SnO2 coating,” Mrs Commun., 8 (3), 1358-1362, 2018.
  • [6] T. V. Dang, S. V. N. Pammi, J. Choi, and S. G. Yoon, “Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells,” Sol. Energy Mater. Sol. Cells, 163, 58-65, 2017.
  • [7] A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, and W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater., 10 (11), 859-863, 1998.
  • [8] S. J. Ikhmayies, “Spray-deposited coral-like ZnO micro/nano thin films on glass substrates,” JOM, 73(1), 356-363, 2021.
  • [9] N. Guermat, W. Daranfed, and K. Mirouh, “Extended wide band gap amorphous ZnO thin films deposited by spray pyrolysis,” Ann Chimie Sci Materiaux, 44 (5), 347-352, 2020.
  • [10] Y. Benkhetta, A. Attaf, H. Saidi, R. Messemeche, A. Bouhdjer, H. Bendjedidi, I.B. Kherkhachi, and A. Rahil, “Controlling of c-axis position of ZnO nano-crystalline films deposited at various substrate temperature by ultrasonic spray method,” Surf. Interfaces, 21, 100698, 2020.
  • [11] H. Trir, L. Radjehi, N. Sengouga, T. Tibermacine, L. Arab, W. Filali, D. Abdelkader, and N. Attaf, “Effect of annealing on the dark and illuminated I(V) characterization of a ZnO: Ga|Cu2O hetero-junction prepared by ultrasonic spray system,” Semiconductors, 54, 534-542, 2020.
  • [12] T. Potlog, L. Gorceac, M. Taku, I. Lungu, S. Raevschi, S. Worasawat, V. Botnariuc, and H. Mimura, “Synthesis and properties of Al-doped ZnO thin films for photovoltaics,” In 2018 4th ICNERE, IEEE, 1-6, 2018.
  • [13] M. Acosta-Osorno, S. Alcántara-Iniesta, J. Alvarado, C. D. Young, I. Mejía, M. García, J.R. Ramos-Serrano, and G. Juarez-Díaz, “Characterization of ZnO thin films obtained by ultrasonic spray pyrolysis for application in uv photoconductive detectors,” Mater. Res. Express, 6(11), 116450, 2019.
  • [14] P. S. Kolhe, A. B. Shinde, S. G. Kulkarni, N. Maiti, P. M. Koinkar, and K. M. Sonawane, “Gas sensing performance of Al doped ZnO thin film for H2S detection,” J. Alloys Compd., 748, 6-11, 2018.
  • [15] G. R. Lima, J. P. Braga, G. Gozzi, and L. Fugikawa-Santos, “On the reproducibility of spray-coated ZnO thin-film transistors,” Mrs Advances, 5 (35), 1859-1866, 2020.
  • [16] N. Kumari, S. R. Patel, and J. V. Gohel, “Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application,” Opt. Quantum Electron., 50 (4), 1-22, 2018.
  • [17] L. S. Chuah, H. I. Abdulgafour, and Z. Hassan, “Preparation of aluminum foil-supported ZnO nanocoral reef films,” The IJES, 2, 42-45, 2013.
  • [18] K. Davis, R. Yarbrough, M. Froeschle, J. White, and H. Rathnayake, “Band gap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth,” Rsc Advances, 9 (26), 14638-14648, 2019.
  • [19] M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, and M. Zerdali, “Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films,” Physica B. Condens. Matter, 403 (18), 3326-3330, 2008.
  • [20] M. G. Faraj, and K. Ibrahim, “Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates,” Int. J. Polym. Sci., 2011, 1-4, 2011.
  • [21] S. P. Bharath, K. V. Bangera, and G. K. Shivakumar, “Enhanced gas sensing properties of ındium doped ZnO thin films,” Superlattices Microstruct., 124, 72-78, 2018.
  • [22] Y. Lee, H. Kim, and Y. Roh, “Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique,” Jpn J Appl Phys, 40 (4R), 2423, 2001.
  • [23] M. P. F. de Godoy, L. K. S. de Herval, A. A. C. Cotta, Y. J. Onofre, and W. A. A. Macedo, “ZnO thin films design: the role of precursor molarity in the spray pyrolysis process,” J. Mater. Sci. Mater. Electron., 31 (20), 17269-17280, 2020.
  • [24] W. Yang, Z. Yang, D. Li, X., Zhang, Z. Zhou, S. Tian, Y. Tong, C. Xia, M. Liu, L. Li, and F. Wang, “Study on the growth and optical properties of ZnO thin films fabricated by ultrasonic spray pyrolysis,” Mod. Phys. Lett. B, 32 (29), 1850351, 2018.
  • [25] S. Akyürekli, M. Kaleli, M. Koç, D. A. Aldemir, “Ultrasonik sprey piroliz yöntemi ile üretilen güneş soğurucu CH3NH3PbI3-xClx perovskit yapısının optik, morfolojik ve yapısal özelliklerinin incelenmesi,” Süleyman Demirel Üniv. FEF Derg., 15 (2), 253-263, 2020.
  • [26] D. Gültekin, F. Kayış, H. Akbulut, “ZnO ince film kaplamaların kıvrımlı ağ morfolojisinin incelenmesi,” Bilecik Şeyh Edebali Üniv. Fen Bilim. Derg., 3 (1), 25-28, 2016.
  • [27] B. I. Lahlouh, S. J. Ikhmayies, H. K. Juwhari, “Structural, optical, and vibrational properties of ZnO microrods deposited on silicon substrate,” J. Electron. Mater., 47(8), 4455-4462, 2018.
  • [28] E. Karaköse, and H. Colak, “Effect of substrate temperature on the structural properties of ZnO nanorods,” Energy, 141, 50-55, 2017.
  • [29] F. A. Mahmoud, and G. Kiriakidis, “Nanocrystalline ZnO thin film for gas sensor application,” J Ovonic Res., 5, 15-20, 2009.
  • [30] R. Swapna, and M. S. Kumar, “The role of substrate temperature on the properties of nanocrystalline Mo doped ZnO thin films by spray pyrolysis,” Ceram. Int., 38(5), 3875-3883, 2012.
  • [31] H. Nanto, T. Minami, S. Shooji, and S. Takata, “Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications,” Int. J. Appl. Phys., 55 (4), 1029-1034, 1984.
  • [32] H. K., Kaplan ve S. K. Akay, “ZnSe/Si heteroeklem yapının fotoelektrik özelliklerinin incelenmesi,” Uludağ University JFE, 24 (1), 265-276, 2019.
  • [33] A. Rahal, S. Benramache, and B. Benhaoua, “Substrate temperature effect on optical property of ZnO thin films,” Eng. J., 18 (2), 81-88, 2014.
  • [34] Y. Aoun, B. Benhaoua, S. Benramache, and B. Gasmi, “Effect of annealing temperature on structural, optical and electrical properties of zinc oxide (ZnO) thin films deposited by spray pyrolysis technique,” Optik, 126 (24), 5407-5411, 2015.

Ultrasonik Sprey Piroliz ile Üretilen ZnO İnce Filmlerin Alttaş Sıcaklıklarının Yapısal ve Optik Özelliklerine Etkisi

Year 2021, , 169 - 178, 27.05.2021
https://doi.org/10.29233/sdufeffd.911477

Abstract

Bu çalışmada, ZnO ince filmler; 350, 400 ve 450 °C üç farklı sıcaklıktaki alttaşa ultrasonik sprey piroliz yöntemi ile biriktirilmiştir. ZnO ince film üretiminde çinko kaynağı olarak çinko asetat dihidrat (Zn(CH3COO)2.2H2O) kullanılmıştır. Yapılan XRD analizleri, ZnO ince filmlerin, nano boyutta hekzagonal yapıda ve baskın pik pozisyonunun (100) düzleminde olduğunu doğrulamıştır. Kristal tane boyutu Debye-Scherrer formülü kullanılarak hesaplanmış ve 324.7-442.3 Å aralığında bulunmuştur. SEM yüzey görüntüleri incelendiğinde ZnO ince filmlerin homojen bir şekilde kaplandığı ve SEM kesit görüntülerinden kalınlıkların ~251-286 nm aralığında değiştiği görülmektedir. Filmlerin yüzey pürüzlülüğü AFM ile incelenmiş ve yüzey pürüzlülük değerleri 23.00-43.44 nm aralığında elde edilmiştir. ZnO ince filmlerin UV spektrumlarından, optik geçirgenlikleri %80' in üzerinde bulunurken, yasak enerji aralıkları 3.13-3.26 eV olarak bulunmuştur.

References

  • [1] C. H. Lai, Z. Y. Lee, S. C. Lin, and Y. H. Chuang, “Al-doped ZnO transparent conducting glass with an IGZO buffer layer for dye-sensitized solar cells,” IEEE J Photovolt, 10 (3), 795-802, 2020.
  • [2] A. K. Sahoo, C. S. Yang, O. Wada, and C. L. Pan, “Twisted nematic liquid crystal based terahertz phase shifter with crossed ındium tin oxide finger type electrodes,” IEEE Trans. Terahertz Sci. Technol, 9 (4), 399-408, 2019.
  • [3] D. Saikia, and R. Sarma, “A comparative study of the influence of nickel oxide layer on the FTO surface of organic light emitting diode,” Indian J. Phys., 92 (3), 307-313, 2018.
  • [4] T. Kawashima, H. Matsui, and N. Tanabe, “New Transparent Conductive Films: FTO Coated ITO,” Thin Solid Films, 445 (2), 241-244, 2003.
  • [5] D. A. Keller, H. N. Barad, E. Rosh-Hodesh, A. Zaban, and D. Cahen, “Can fluorine-doped tin oxide, FTO, be more like indium-doped tin oxide, ITO? Reducing FTO surface roughness by introducing additional SnO2 coating,” Mrs Commun., 8 (3), 1358-1362, 2018.
  • [6] T. V. Dang, S. V. N. Pammi, J. Choi, and S. G. Yoon, “Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells,” Sol. Energy Mater. Sol. Cells, 163, 58-65, 2017.
  • [7] A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, and W. R. Salaneck, “Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs,” Adv. Mater., 10 (11), 859-863, 1998.
  • [8] S. J. Ikhmayies, “Spray-deposited coral-like ZnO micro/nano thin films on glass substrates,” JOM, 73(1), 356-363, 2021.
  • [9] N. Guermat, W. Daranfed, and K. Mirouh, “Extended wide band gap amorphous ZnO thin films deposited by spray pyrolysis,” Ann Chimie Sci Materiaux, 44 (5), 347-352, 2020.
  • [10] Y. Benkhetta, A. Attaf, H. Saidi, R. Messemeche, A. Bouhdjer, H. Bendjedidi, I.B. Kherkhachi, and A. Rahil, “Controlling of c-axis position of ZnO nano-crystalline films deposited at various substrate temperature by ultrasonic spray method,” Surf. Interfaces, 21, 100698, 2020.
  • [11] H. Trir, L. Radjehi, N. Sengouga, T. Tibermacine, L. Arab, W. Filali, D. Abdelkader, and N. Attaf, “Effect of annealing on the dark and illuminated I(V) characterization of a ZnO: Ga|Cu2O hetero-junction prepared by ultrasonic spray system,” Semiconductors, 54, 534-542, 2020.
  • [12] T. Potlog, L. Gorceac, M. Taku, I. Lungu, S. Raevschi, S. Worasawat, V. Botnariuc, and H. Mimura, “Synthesis and properties of Al-doped ZnO thin films for photovoltaics,” In 2018 4th ICNERE, IEEE, 1-6, 2018.
  • [13] M. Acosta-Osorno, S. Alcántara-Iniesta, J. Alvarado, C. D. Young, I. Mejía, M. García, J.R. Ramos-Serrano, and G. Juarez-Díaz, “Characterization of ZnO thin films obtained by ultrasonic spray pyrolysis for application in uv photoconductive detectors,” Mater. Res. Express, 6(11), 116450, 2019.
  • [14] P. S. Kolhe, A. B. Shinde, S. G. Kulkarni, N. Maiti, P. M. Koinkar, and K. M. Sonawane, “Gas sensing performance of Al doped ZnO thin film for H2S detection,” J. Alloys Compd., 748, 6-11, 2018.
  • [15] G. R. Lima, J. P. Braga, G. Gozzi, and L. Fugikawa-Santos, “On the reproducibility of spray-coated ZnO thin-film transistors,” Mrs Advances, 5 (35), 1859-1866, 2020.
  • [16] N. Kumari, S. R. Patel, and J. V. Gohel, “Optical and structural properties of ZnO thin films prepared by spray pyrolysis for enhanced efficiency perovskite solar cell application,” Opt. Quantum Electron., 50 (4), 1-22, 2018.
  • [17] L. S. Chuah, H. I. Abdulgafour, and Z. Hassan, “Preparation of aluminum foil-supported ZnO nanocoral reef films,” The IJES, 2, 42-45, 2013.
  • [18] K. Davis, R. Yarbrough, M. Froeschle, J. White, and H. Rathnayake, “Band gap engineered zinc oxide nanostructures via a sol-gel synthesis of solvent driven shape-controlled crystal growth,” Rsc Advances, 9 (26), 14638-14648, 2019.
  • [19] M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui, and M. Zerdali, “Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films,” Physica B. Condens. Matter, 403 (18), 3326-3330, 2008.
  • [20] M. G. Faraj, and K. Ibrahim, “Optical and structural properties of thermally evaporated zinc oxide thin films on polyethylene terephthalate substrates,” Int. J. Polym. Sci., 2011, 1-4, 2011.
  • [21] S. P. Bharath, K. V. Bangera, and G. K. Shivakumar, “Enhanced gas sensing properties of ındium doped ZnO thin films,” Superlattices Microstruct., 124, 72-78, 2018.
  • [22] Y. Lee, H. Kim, and Y. Roh, “Deposition of ZnO thin films by the ultrasonic spray pyrolysis technique,” Jpn J Appl Phys, 40 (4R), 2423, 2001.
  • [23] M. P. F. de Godoy, L. K. S. de Herval, A. A. C. Cotta, Y. J. Onofre, and W. A. A. Macedo, “ZnO thin films design: the role of precursor molarity in the spray pyrolysis process,” J. Mater. Sci. Mater. Electron., 31 (20), 17269-17280, 2020.
  • [24] W. Yang, Z. Yang, D. Li, X., Zhang, Z. Zhou, S. Tian, Y. Tong, C. Xia, M. Liu, L. Li, and F. Wang, “Study on the growth and optical properties of ZnO thin films fabricated by ultrasonic spray pyrolysis,” Mod. Phys. Lett. B, 32 (29), 1850351, 2018.
  • [25] S. Akyürekli, M. Kaleli, M. Koç, D. A. Aldemir, “Ultrasonik sprey piroliz yöntemi ile üretilen güneş soğurucu CH3NH3PbI3-xClx perovskit yapısının optik, morfolojik ve yapısal özelliklerinin incelenmesi,” Süleyman Demirel Üniv. FEF Derg., 15 (2), 253-263, 2020.
  • [26] D. Gültekin, F. Kayış, H. Akbulut, “ZnO ince film kaplamaların kıvrımlı ağ morfolojisinin incelenmesi,” Bilecik Şeyh Edebali Üniv. Fen Bilim. Derg., 3 (1), 25-28, 2016.
  • [27] B. I. Lahlouh, S. J. Ikhmayies, H. K. Juwhari, “Structural, optical, and vibrational properties of ZnO microrods deposited on silicon substrate,” J. Electron. Mater., 47(8), 4455-4462, 2018.
  • [28] E. Karaköse, and H. Colak, “Effect of substrate temperature on the structural properties of ZnO nanorods,” Energy, 141, 50-55, 2017.
  • [29] F. A. Mahmoud, and G. Kiriakidis, “Nanocrystalline ZnO thin film for gas sensor application,” J Ovonic Res., 5, 15-20, 2009.
  • [30] R. Swapna, and M. S. Kumar, “The role of substrate temperature on the properties of nanocrystalline Mo doped ZnO thin films by spray pyrolysis,” Ceram. Int., 38(5), 3875-3883, 2012.
  • [31] H. Nanto, T. Minami, S. Shooji, and S. Takata, “Electrical and optical properties of zinc oxide thin films prepared by rf magnetron sputtering for transparent electrode applications,” Int. J. Appl. Phys., 55 (4), 1029-1034, 1984.
  • [32] H. K., Kaplan ve S. K. Akay, “ZnSe/Si heteroeklem yapının fotoelektrik özelliklerinin incelenmesi,” Uludağ University JFE, 24 (1), 265-276, 2019.
  • [33] A. Rahal, S. Benramache, and B. Benhaoua, “Substrate temperature effect on optical property of ZnO thin films,” Eng. J., 18 (2), 81-88, 2014.
  • [34] Y. Aoun, B. Benhaoua, S. Benramache, and B. Gasmi, “Effect of annealing temperature on structural, optical and electrical properties of zinc oxide (ZnO) thin films deposited by spray pyrolysis technique,” Optik, 126 (24), 5407-5411, 2015.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Murat Koç 0000-0002-1048-6150

Publication Date May 27, 2021
Published in Issue Year 2021

Cite

IEEE M. Koç, “Ultrasonik Sprey Piroliz ile Üretilen ZnO İnce Filmlerin Alttaş Sıcaklıklarının Yapısal ve Optik Özelliklerine Etkisi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 16, no. 1, pp. 169–178, 2021, doi: 10.29233/sdufeffd.911477.