Research Article
BibTex RIS Cite

Anlı-Güngör Saçılma Formülü için Case metodu

Year 2022, , 1 - 8, 27.05.2022
https://doi.org/10.29233/sdufeffd.925308

Abstract

Case metodu, tek-hızlı nötron transport denkleminin çözümünde güçlü bir metottur. Case metodu tek hızlı nötron transport problemlerine ve psedo-geometrilere uygulanabilir. Method, ilgilenen problemin özelliklerine göre belirli sınır şartlarıyla Case özfonksiyonları ve bu özfonksiyonlar arasındaki diklik bağıntılarının kullanımına dayanır. Saçılma etkileri Mika saçılma formülü ve İnönü saçılma formülü ile araştırılabilir. Bu çalışmada Case metodunun formalizmi, Mika saçılma fonksiyonunun analoğu olarak Anlı-Güngör saçılma formülü için türetilmiştir. Bu çalışma, Case özfonksiyonlarını, normalizasyon bağıntısını ve bu özfonksiyonlar arasındaki diklik bağıntıları ile ilgilidir ve dahası Anlı-Güngör saçılma formülündeki saçılma mertebesinin sayısı arttıkça Case özfonksiyonları ve diklik bağıntıları çalışılan saçılma parametresine göre yeniden yazılmalıdır.

References

  • [1] K. M. Case, “Elementary solutions of the transport equation and their applications,” Ann. Phy., 9 (1), 1-23, 1960. [2] K. M. Case and P. F. Zweifel, Linear Transport Theory. MA, Addition-Wesley, 1967.
  • [3] K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of Neutron Diffusion. Los Alamos, N.M.: Los Alamos Scientific Laboratory, 1953.
  • [4] J. Mika, “Neutron transport with anisotropic scattering,” Nucl. Sci. Eng., 11 (4), 415-427, 1961.
  • [5] E. İnönü, “Orthogonality of a set of polynomials encountered in neutron transport and radiative transfer theories,” J. Math. Phy., 11, 568 1970.
  • [6] E. İnönü, “A theorem on anisotropic scattering,” Transport Theor. Stat., 3 (2-3), 137-146, 1973.
  • [7] D. C. Sahni, “Density transform method for particle transport problems in spherical geometry with linearly anisotropic scattering,” J. Comp. and Theo. Trans., 50 (4), 249-279, 2021.
  • [8] F. Anlı and S. Güngör, “Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry,” App. Math. Mod., 31, 727-733, 2007.
  • [9] W. W. Bell, Special Functions for Scientists and Engineers, Dover Publications, Mineola, New York, 1968.
  • [10] E. R. Love, “Franz Neumann's integral of 1848,” Math. Proc. Cambridge, 61 (2), 445-456, 1965.

Case’s Method for Anlı-Güngör Scattering Formula

Year 2022, , 1 - 8, 27.05.2022
https://doi.org/10.29233/sdufeffd.925308

Abstract

Case method is a powerful method in solving one-speed neutron transport equation. The method can be applied to one-speed neutron transport problems and pseudo- geometry problems. The method basis on the usage of Case’s eigenfunctions and the orthogonality relations with the certain boundary conditions according to the interested problem. The scattering effects can be investigated via Mika scattering formula and also İnönü’s scattering formula. In this study Case method’s formalism is derived by using Anlı-Güngör scattering formula as an analogue of Mika’s scattering function. This study is about the Case’s eigenfunctions, normalization relation and the orthogonality properties among these eigenfunctions and, moreover; Case’s eigenfunctions and the orthogonality properties must be rewritten according to the studied scattering order as the number of scattering order increase in Anlı-Güngör scattering formula.

Thanks

The authors want to thank Prof. Dinesh C. Sahni for helpful discussions.

References

  • [1] K. M. Case, “Elementary solutions of the transport equation and their applications,” Ann. Phy., 9 (1), 1-23, 1960. [2] K. M. Case and P. F. Zweifel, Linear Transport Theory. MA, Addition-Wesley, 1967.
  • [3] K. M. Case, F. de Hoffmann, and G. Placzek, Introduction to the Theory of Neutron Diffusion. Los Alamos, N.M.: Los Alamos Scientific Laboratory, 1953.
  • [4] J. Mika, “Neutron transport with anisotropic scattering,” Nucl. Sci. Eng., 11 (4), 415-427, 1961.
  • [5] E. İnönü, “Orthogonality of a set of polynomials encountered in neutron transport and radiative transfer theories,” J. Math. Phy., 11, 568 1970.
  • [6] E. İnönü, “A theorem on anisotropic scattering,” Transport Theor. Stat., 3 (2-3), 137-146, 1973.
  • [7] D. C. Sahni, “Density transform method for particle transport problems in spherical geometry with linearly anisotropic scattering,” J. Comp. and Theo. Trans., 50 (4), 249-279, 2021.
  • [8] F. Anlı and S. Güngör, “Some useful properties of Legendre polynomials and its applications to neutron transport equation in slab geometry,” App. Math. Mod., 31, 727-733, 2007.
  • [9] W. W. Bell, Special Functions for Scientists and Engineers, Dover Publications, Mineola, New York, 1968.
  • [10] E. R. Love, “Franz Neumann's integral of 1848,” Math. Proc. Cambridge, 61 (2), 445-456, 1965.
There are 9 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

R. Gökhan Türeci 0000-0001-6309-6300

Ahmet Bülbül 0000-0002-8053-2239

Publication Date May 27, 2022
Published in Issue Year 2022

Cite

IEEE R. G. Türeci and A. Bülbül, “Case’s Method for Anlı-Güngör Scattering Formula”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 17, no. 1, pp. 1–8, 2022, doi: 10.29233/sdufeffd.925308.