Damla Döküm Yöntemi ile Üretilen Perovskit Filmlerin Yaşlanma Süreçlerinin Elektriksel Karakterizasyon Teknikleri ile Belirlenmesi
Year 2022,
, 44 - 54, 27.05.2022
Ayşegül Çoşğun
,
Gökhan Yılmaz
Abstract
Organik-hibrit güneş hücreleri arasında en popüler olan metil amonyum kurşun iyodür (MAPbI3) fazlı perovskit güneş hücreleridir. Bunun nedeni perovskit güneş hücrelerinin sahip oldukları eşsiz özellikler ve yüksek verimlilikleridir. Ancak perovskite güneş hücreleri üretimlerinden hemen sonra verimlilik kaybı yaşamaktadır. Üretim yöntemleri bu verimlilik kaybının nedenlerinden biri olarak gösterilmektedir. Perovskite üretim yöntemleri incelendiğinde spin kaplama, termal buharlaştırma ve termal kimyasal buhar biriktirme (Thermal CVD) en çok kullanılan yöntemler olarak görülmektedir. Damla döküm yöntemi ise bölgesel olarak kristal üretiminde etkili bir yöntem olarak görülmektedir.
Bu çalışmada kimyasal buhar biriktirme ve damla döküm yöntemleri birlikte kullanılarak MAPbI3 filmler üretilmiştir. Elde edilen filmlerin morfolojik ve yapısal özellikleri SEM ve XRD yöntemleri kullanılarak belirlenmiştir. Üretilen perovskit filmler su buharına maruz bırakılmıştır. Su buharına bağlı olarak malzemelerde oluşan yaşlanma süreçleri elektriksel iletkenlik yöntemleri ile karakterize edilmiştir.
Supporting Institution
TÜBİTAK, MAKÜ BAP
Project Number
TÜBİTAK 119F033, MAKÜ-BAP 0695-YL-21
Thanks
Bu çalışma 119F033 proje numarası ile TÜBİTAK tarafından desteklenmiştir. Çalışmada kullanılan bazı ekipmanlar Cumhurbaşkanlığına bağlı olarak Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı tarafından 2017K12 ve 41003-12 proje numarası ile desteklenen ve yürütücülüğünü Burdur Mehmet Akif Ersoy Üniversitesinin yapmış olduğu “Bölgesel Kalkınma Odağı, Misyon Farklılaştırma ve Uzmanlaşma Programı: Burdur İlinde Sektörel Rekabet Gücünün Artırılması / Enerji Bölümü” tarafından desteklenmiştir. Çalışma kapsamında kullanılan bazı sarf malzemeler Burdur Mehmet Akif Ersoy Üniversitesi, Bilimsel Araştırma Projeleri Koordinatörlüğü (MAKÜ-BAP) tarafından 0695-YL-21 proje numarası ile desteklenmiştir. Araştırmacılar olarak Forschungszentrum Jülich /Almanya ve Dr. Friedhelm FINGER’a bağışlarından dolayı teşekkür ederiz. Buna ek olarak akademik destekleri için Prof.Dr. Fatih Mehmet EMEN, Doçent Dr. Murat KALELİ, Uzman Dr.Salih AKYÜREKLİ, Doktora öğrencisi Ayşegül TAŞÇIOĞLU, Y.Lisans öğrencileri Asuman KOÇU ve Fatma Nur SARIKAYA’ya teşekkür ederiz.
References
- [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., 131, 6050–6051, 2009.
- [2] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, “Lead iodide perovskite light-emitting field-effect transistor,” Nat. Commun., 6 7383, 2015.
- [3] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers,” Energy Environ. Sci., 8 1544–1550, 2015.
- [4] Z. Guo, J. S. Manser, Y. Wan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun., 6, 7471, 2015.
- [5] E. M. Hutter, G. E. Eperon, S. D. Stranks, and T. J. Savenije, “Charge carriers in planar and meso-structured organic–ınorganic perovskites: Mobilities, lifetimes, and concentrations of trap states,” J. Phys. Chem. Lett., 6, 3082–3090, 2015.
- [6] D.-D. Li, W.-L. Chen, X.-L. Xu, F. Jiang, L. Wang, Y.-Y. Xie, X.-J. Zhang, X.-K. Guo, Q.-D. You, and H.-P. Sun, “Structure-based design and synthesis of small molecular inhibitors disturbing the interaction of MLL1-WDR5,” Eur. J. Med. Chem., 118, 1–8, 2016.
- [7] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun., 6, 8238, 2015.
- [8] Z. Lian, Q. Yan, T. Gao, J. Ding, Q. Lv, C. Ning, Q. Li, and J. Sun, “Perovskite CH 3 NH 3 PbI 3 (Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 10 8 cm –3,” J. Am. Chem. Soc., 138, 9409–9412, 2016.
- [9] Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, and J. Huang, “Suppressed ion migration in low-dimensional perovskites,” ACS Energy Lett., 2, 1571–1572, 2017.
- [10] Y. Mei, C. Zhang, Z. V. Vardeny, and O. D. Jurchescu, “Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature,” MRS Commun., 5, 297–301, 2015.
- [11] C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep., 5, 12746, 2015.
- [12] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps,” J. Am. Chem. Soc., 136, 13818–13825, 2014.
- [13] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, 342, 341–344, 2013.
- [14] Y.-C. Zhao, W.-K. Zhou, X. Zhou, K.-H. Liu, D.-P. Yu, and Q. Zhao, “Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications,” Light Sci. Appl., 6, e16243–e16243, 2017.
- [15] K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, and W. Tress, “Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells,” Nat. Energy. 3, 61–67, 2018.
- [16] M. Alsari, A. J. Pearson, J. T. W. Wang, Z. Wang, A. Montisci, N. C. Greenham, H. J. Snaith, S. Lilliu, and R. H. Friend, “Degradation kinetics of ınverted perovskite solar cells,” Sci. Rep., 8, 6–11, 2018.
- [17] H. S. Jung and N. G. Park, “Perovskite solar cells: From materials to devices,” Small., 11, 10–25, 2015.
- [18] J. A. Christians, P.A. Miranda Herrera, and P. V. Kamat, “Transformation of the excited state and photovoltaic efficiency of CH 3 NH 3 PbI 3 perovskite upon controlled exposure to humidified air,” J. Am. Chem. Soc., 137, 1530–1538, 2015.
- [19] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells,” Nat. Commun., 4, 1–8, 2013.
- [20] W. Li, W. Zhang, S. Van Reenen, R. J. Sutton, J. Fan, A. A. Haghighirad, M.B. Johnston, L. Wang, and H. J. Snaith, “Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification,” Energy Environ. Sci., 9, 490–498, 2016.
- [21] F. Bella, G. Griffini, J. P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, and C. Gerbaldi, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science, 354, 203–206, 2016.
- [22] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett., 14, 2584–2590, 2014.
- [23] G. Yilmaz, A. Cosgun, and A. Tascioglu, “Lead iodide thin-film morphological-dependent metastability investigation by electrical conductivity,” J. Mater. Sci. Mater. Electron., 32, 3222–3231, 2021.
- [24] D. Wang, M. Wright, N.K. Elumalai, and A. Uddin, “Stability of perovskite solar cells,” Sol. Energy Mater. Sol. Cells., 147, 255–275, 2016.
Determination of Aging Processes of Perovskite Films Produced by Drop Casting Method by Electrical Characterization Techniques
Year 2022,
, 44 - 54, 27.05.2022
Ayşegül Çoşğun
,
Gökhan Yılmaz
Abstract
The most popular organic-hybrid solar cells are known to be perovskite solar cells with methyl ammonium lead iodide (MAPbI3) phase. This is due to the unique properties and high efficiency of perovskite solar cells. However, perovskite solar cells show a loss of efficiency shortly after their production. Production methods are cited as one of the reasons for this loss of efficiency. When perovskite production methods are examined, spin coating, thermal evaporation and thermal chemical vapor deposition (Thermal CVD) are seen as the most used methods. The drop casting method is seen as an effective method in the production of crystals locally.
In this study, MAPbI3 films were produced by using chemical vapor deposition and drop casting methods together. The morphological and structural properties of the films obtained were determined by using SEM and XRD methods. The produced perovskite films were exposed to water vapor. Aging processes in materials due to water vapor have been characterized by electrical conductivity methods.
Project Number
TÜBİTAK 119F033, MAKÜ-BAP 0695-YL-21
References
- [1] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells,” J. Am. Chem. Soc., 131, 6050–6051, 2009.
- [2] X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, “Lead iodide perovskite light-emitting field-effect transistor,” Nat. Commun., 6 7383, 2015.
- [3] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers,” Energy Environ. Sci., 8 1544–1550, 2015.
- [4] Z. Guo, J. S. Manser, Y. Wan, P. V. Kamat, and L. Huang, “Spatial and temporal imaging of long-range charge transport in perovskite thin films by ultrafast microscopy,” Nat. Commun., 6, 7471, 2015.
- [5] E. M. Hutter, G. E. Eperon, S. D. Stranks, and T. J. Savenije, “Charge carriers in planar and meso-structured organic–ınorganic perovskites: Mobilities, lifetimes, and concentrations of trap states,” J. Phys. Chem. Lett., 6, 3082–3090, 2015.
- [6] D.-D. Li, W.-L. Chen, X.-L. Xu, F. Jiang, L. Wang, Y.-Y. Xie, X.-J. Zhang, X.-K. Guo, Q.-D. You, and H.-P. Sun, “Structure-based design and synthesis of small molecular inhibitors disturbing the interaction of MLL1-WDR5,” Eur. J. Med. Chem., 118, 1–8, 2016.
- [7] F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A.D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun., 6, 8238, 2015.
- [8] Z. Lian, Q. Yan, T. Gao, J. Ding, Q. Lv, C. Ning, Q. Li, and J. Sun, “Perovskite CH 3 NH 3 PbI 3 (Cl) single crystals: Rapid solution growth, unparalleled crystalline quality, and low trap density toward 10 8 cm –3,” J. Am. Chem. Soc., 138, 9409–9412, 2016.
- [9] Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, and J. Huang, “Suppressed ion migration in low-dimensional perovskites,” ACS Energy Lett., 2, 1571–1572, 2017.
- [10] Y. Mei, C. Zhang, Z. V. Vardeny, and O. D. Jurchescu, “Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature,” MRS Commun., 5, 297–301, 2015.
- [11] C. Motta, F. El-Mellouhi, and S. Sanvito, “Charge carrier mobility in hybrid halide perovskites,” Sci. Rep., 5, 12746, 2015.
- [12] H. Oga, A. Saeki, Y. Ogomi, S. Hayase, and S. Seki, “Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps,” J. Am. Chem. Soc., 136, 13818–13825, 2014.
- [13] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber,” Science, 342, 341–344, 2013.
- [14] Y.-C. Zhao, W.-K. Zhou, X. Zhou, K.-H. Liu, D.-P. Yu, and Q. Zhao, “Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications,” Light Sci. Appl., 6, e16243–e16243, 2017.
- [15] K. Domanski, E.A. Alharbi, A. Hagfeldt, M. Grätzel, and W. Tress, “Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells,” Nat. Energy. 3, 61–67, 2018.
- [16] M. Alsari, A. J. Pearson, J. T. W. Wang, Z. Wang, A. Montisci, N. C. Greenham, H. J. Snaith, S. Lilliu, and R. H. Friend, “Degradation kinetics of ınverted perovskite solar cells,” Sci. Rep., 8, 6–11, 2018.
- [17] H. S. Jung and N. G. Park, “Perovskite solar cells: From materials to devices,” Small., 11, 10–25, 2015.
- [18] J. A. Christians, P.A. Miranda Herrera, and P. V. Kamat, “Transformation of the excited state and photovoltaic efficiency of CH 3 NH 3 PbI 3 perovskite upon controlled exposure to humidified air,” J. Am. Chem. Soc., 137, 1530–1538, 2015.
- [19] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells,” Nat. Commun., 4, 1–8, 2013.
- [20] W. Li, W. Zhang, S. Van Reenen, R. J. Sutton, J. Fan, A. A. Haghighirad, M.B. Johnston, L. Wang, and H. J. Snaith, “Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification,” Energy Environ. Sci., 9, 490–498, 2016.
- [21] F. Bella, G. Griffini, J. P. Correa-Baena, G. Saracco, M. Grätzel, A. Hagfeldt, S. Turri, and C. Gerbaldi, “Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers,” Science, 354, 203–206, 2016.
- [22] J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, “Atomistic origins of high-performance in hybrid halide perovskite solar cells,” Nano Lett., 14, 2584–2590, 2014.
- [23] G. Yilmaz, A. Cosgun, and A. Tascioglu, “Lead iodide thin-film morphological-dependent metastability investigation by electrical conductivity,” J. Mater. Sci. Mater. Electron., 32, 3222–3231, 2021.
- [24] D. Wang, M. Wright, N.K. Elumalai, and A. Uddin, “Stability of perovskite solar cells,” Sol. Energy Mater. Sol. Cells., 147, 255–275, 2016.