BibTex RIS Cite

ON-RECURRENT LORENTZIAN -KENMOTSU MANIFOLDS

Year 2009, Volume: 4 Issue: 1, 75 - 79, 08.06.2009

Abstract

Abstract: In this paper, we study Lorentzian -Kenmotsu manifold and we shown that -recurrent Lorentzian -Kenmotsu manifold is an Einstein manifold and a pseudo-projective -recurrent Lorentzian -Kenmotsu manifold is an - Einstein manifold. And also we get the expression for 1-form A in a -recurrent Lorentzian -Kenmotsu manifold.

Key words: -Kenmotsu manifold, locally pseudo-projective -symmetric manifold, -recurrent Lorentzian -Kenmotsu manifold, Einstein manifold, -Einstein manifold



-TEKRARLI (RECURRENT) LORENTZ -KENMOTSU
MANİFOLDLARI ÜZERİNE

Özet: Bu çalışmada Lorentz -Kenmotsu manifoldları çalışıldı. -tekrarlı (recurrent) Lorentz -Kenmotsu manifoldunun bir Einstein manifoldu olduğu, bir yarı projektif -tekrarlı Lorentz -Kenmotsu manifoldunun da bir - Einstein manifoldu olduğu gösterildi. Aynı zamanda bir -tekrarlı Lorentz -Kenmotsu manifoldunda A 1-formunun ifadesi elde edildi.

Anahtar kelimeler: -Kenmotsu manifoldu, local yarı projektif -simetrik manifoldu, -tekrarlı Lorentz -Kenmotsu manifoldu, Einstein manifoldu, -Einstein manifoldu

References

  • BAGEWADI CS, PRAKASHA DG, BASAVARAJAPPA NS, 2008a. On Lorentzian β-Kenmosu manifolds. International Journal of Mathematical Analysis, 9(2), 919-927.
  • BAGEWADI CS, PRAKASHA DG, BASAVARAJAPPA NS, 2008b. Some results on Lorentzian β-Kenmosu manifolds. Annals of the University of Craiova, Mathematics and Computer Science Series, 35, 7-14.
  • BHAGAWATH P, 2002. A pseudo-projective curvature tensor on a Riemannian manifolds. Bulletin of the Calcutta Mathematical Society, 94(3), 163-166.
  • DE UC, PATHAK G, 2004. On 3-Dimensional Kenmotsu Manifolds. Indian Journal of Pure and Applied Mathematics. 35(2), 159-165.
  • MATSUMOTO K, MIHAI I, 1988. On a certain transformation in a Lorentzian para - Sasakian manifold. Tensor, New Series, 47, 189-197.
  • MIHAI I, ROSCA R, 1992. On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publications, 155-169.
  • SHAIKH AA, DE UC, 2000. On 3-Dimensional LP-Sasakian Manifolds. Soochow Journal of Mathematics, 26(4), 359-368.
  • TAKAHASHI T, 1977. Sasakian φ-symmetric spaces. Tohoku Mathematical Journal, 29 , 91-113.
  • VENKATESHA, BAGEWADI CS, 2005. On 3- Dimensional trans-Sasakian Manifolds. Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE), 42(5), 73-83.
Year 2009, Volume: 4 Issue: 1, 75 - 79, 08.06.2009

Abstract

References

  • BAGEWADI CS, PRAKASHA DG, BASAVARAJAPPA NS, 2008a. On Lorentzian β-Kenmosu manifolds. International Journal of Mathematical Analysis, 9(2), 919-927.
  • BAGEWADI CS, PRAKASHA DG, BASAVARAJAPPA NS, 2008b. Some results on Lorentzian β-Kenmosu manifolds. Annals of the University of Craiova, Mathematics and Computer Science Series, 35, 7-14.
  • BHAGAWATH P, 2002. A pseudo-projective curvature tensor on a Riemannian manifolds. Bulletin of the Calcutta Mathematical Society, 94(3), 163-166.
  • DE UC, PATHAK G, 2004. On 3-Dimensional Kenmotsu Manifolds. Indian Journal of Pure and Applied Mathematics. 35(2), 159-165.
  • MATSUMOTO K, MIHAI I, 1988. On a certain transformation in a Lorentzian para - Sasakian manifold. Tensor, New Series, 47, 189-197.
  • MIHAI I, ROSCA R, 1992. On Lorentzian P-Sasakian manifolds. Classical Analysis, World Scientific Publications, 155-169.
  • SHAIKH AA, DE UC, 2000. On 3-Dimensional LP-Sasakian Manifolds. Soochow Journal of Mathematics, 26(4), 359-368.
  • TAKAHASHI T, 1977. Sasakian φ-symmetric spaces. Tohoku Mathematical Journal, 29 , 91-113.
  • VENKATESHA, BAGEWADI CS, 2005. On 3- Dimensional trans-Sasakian Manifolds. Association for the Advancement of Modelling and Simulation Techniques in Enterprises (AMSE), 42(5), 73-83.
There are 9 citations in total.

Details

Primary Language English
Journal Section Makaleler
Authors

G.T. Sreenıvasa This is me

VENKATESHA Venkatesha This is me

C.S. Bagewadı This is me

K. Naganagoud This is me

Publication Date June 8, 2009
Published in Issue Year 2009 Volume: 4 Issue: 1

Cite

IEEE G. Sreenıvasa, V. Venkatesha, C. Bagewadı, and K. Naganagoud, “ON-RECURRENT LORENTZIAN -KENMOTSU MANIFOLDS”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 4, no. 1, pp. 75–79, 2009, doi: 10.29233/sdufeffd.134667.