Research Article
BibTex RIS Cite

Specific Activity of 226Ra, 232Th and 40K for Assessment of Radiation Hazards from Building Materials Commonly Used in Upper Egypt

Year 2011, Volume: 6 Issue: 2, 120 - 126, 01.12.2011

Abstract

 In this paper, the specific activity of natural radionuclides (226Ra, 232Th, and 40K) in some building materials, soil, sand, redbrick, clay brick, limestone, alabaster and marble commonly used in Upper Egypt is presented. Measurements were done by using gamma spectrometry (NaI (Tl) 3″x 3″). Concentrations of natural radionuclides (CRa, CTh and CK), radium equivalent (Raeq), external hazard index (Hex), the specific dose rates in door (D) and the annual effective dose (DE) due to gamma radiation from building materials was calculated. Concentrations of natural radionuclides (226Ra and 232Th) are in usual range and below maximal permitted values. The lowest value of (Hex) is 0.15 for sand while the highest one is 0.5 for Redbrick. The ranges of (DE) are between 0.9 and 3.5 μSvy-1, it is below maximal permitted values, so that examined materials can be used for construction of new buildings (for interior and external works) as well as for covering of pavements, floors, etc. 

References

  • [1] Stoulos S., Manolopoulo M., Papastefanou C., 2003. Assessment of natural radiation exposure and radon exhalation from building materials in Greece, Journal of Environmental Radioactivity, 69 (3): 225–240.
  • [2] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, 2000. Sources, Effects and Risks of Ionizing Radiation. 2000 Report to the General Assembly with Annex B: Exposures from Natural Sources of Radiation. United Nations, New York.
  • [3] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, 1977. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Annex B: Natural Sources of Radiation. United Nations, New York.
  • [4] American Society for Testing Materials (ASTM). Standard method for sampling surface soils for radionuclides. Report No. C (Philadelphia, PA: ASTM) pp. 983–998 (1983).
  • [5] American Society for Testing Materials (ASTM). Recommended practice for investigation and sampling soil and rock for engineering purposes. Report No. D (Philadelphia, PA: ASTM) Ann. Book of ASTM Standards (04.08) 420; pp. 109–113 (1986).
  • [6] GENIE-2000 Basic Spectroscopy (Standalone) V1.2A Copyright (c) 1997, Canberra Industries.
  • [7] Uosif M.A.M., El-Taher A., Abbady G.A., 2008. Radiological significance of beach sand used for climatotherapy from safaga, Egypt, Radiation Protection Dosimetry, 131 (3): 331–339.
  • [8] Hayambu P., Zaman M.B., Lubaba N.C.H., Munsanje S.S., Muleya D., 1995. Natural radioactivity in Zambian building materials collected from Lusaka, Journal of Radioanalytical and Nuclear Chemistry, 199 (3): 229–238.
  • [9] Beretka J., Mathew P.J., 1985. Natural radioactivity of Australian building materials, industrial wastes and by- products, Health Physics, 48 (1): 87- 95.
  • [10] Righi S., Bruzzi L., 2006. Natural radioactivity and radon exhalation in building materials used in Italian dwellings, Journal of Environmental Radioactivity, 88 (2): 158–170.
  • [11] Amrani D., Tahtat M., 2001. Natural radioactivity in Algerian building materials, Applied Radiation and Isotopes, 54 (4): 687–689.
  • [12] Mantazul I., Chowdury M.N., Alam A.K., 1998. Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard, Journal of Radioanalytical and Nuclear Chemistry, 231(1–2): 117–121.
  • [13] Malanca A., Pessina V., Dallara G., Luce N.C., Gaidol L., 1995. Natural radioactivity in building materials from Brazilian state of Espirito Santo, Applied Radiation and Isotope, 46 (12): 1387– 1392.
  • [14] Sharaf M., Mansy M., El Sayed A., Abbas E., 1999. Natural radioactivity and radon exhalation rates in building materials used in Egypt, Radiation Measurements, 31 (1): 491–495.
  • [15] Kumar A., Kumar M., Singh B., Singh S., 2003. Natural activities of 238U, 232Th and 40K in some Indian building materials, Radiation Measurements, 36 (1): 465–469.
  • [16] Bou-Rabee F., Bem H., 1996. Natural radioactivity in building materials utilized in the state of Kuwait, Journal of Radioanalytical and Nuclear Chemistry, 213 (2): 143–149.
  • [17] Ibrahim N., 1999. Natural activity of 238U, 232Th and 40K in building materials, Journal of Environmental Radioactivity, 43 (3): 255–558.
  • [18] Ahmad M.N., Hussein A.J.A., 1997. Natural radioactivity in Jordanian building materials and the associated radiation hazards, Journal of Environmental Radioactivity, 39 (1): 9–22.
  • [19] Ngachin M., Garavaglia M., Giovani C., Kwato Njock M.G., Nourreddine A., 2007. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials, Radiation Measurements, 42 (1): 61 – 67.
  • [20] El-Tahawy M.S., Higgy R.H., 1995. Natural radioactivity in different types of bricks fabricated and used in Cairo region, Applied Radiation and Isotopes, 46 (12): 1401–1406.
  • [21] Savidou A., Raptis C., Kritidis P., 1996. Study of natural radionuclides and radon emanation in bricks used in the Attica region, Greece, Journal of Environmental Radioactivity, 31 (1): 21–28.
  • [22] Man C.K., Yeung H.S., 1998. Radioactivity contents of building materials used in Hong Kong, Journal of Radioanalytical and Nuclear Chemistry, 232 (1-2): 219–222.
  • [23] Ahmed N.K., 2005. Measurement of natural radioactivity in building materials in Qena city, Upper Egypt, Journal of Environmental Radioactivity, 83 (1): 91–99.
  • [24] Organization for Economic Cooperation and Development, 1979. Exposure to radiation from the natural radioactivity in building materials. OECD, Paris.

Yukarı Mısır Bölgesinde Yaygın Olarak Kullanılan Yapı Malzemelerindeki Radyasyon Riskinin Değerlendirilmesi Açısından 226Ra, 232Th ve 40K’ın Özgül Aktivitelerinin Belirlenmesi

Year 2011, Volume: 6 Issue: 2, 120 - 126, 01.12.2011

Abstract

Yukarı Mısır bölgesinde yaygın olarak kullanılan toprak, kum, kızıl tuğla, killi tuğla, kireç taşı, kaymak taşı ve mermer gibi bazı yapı malzemelerinde bulunan doğal radyoçekirdeklerin (226Ra, 232Th ve 40K) özgül aktiviteleri bu makalede sunulmaktadır. Ölçümler 3″x 3″ NaI (Tl) gama spektrometresi kullanılarak yapılmıştır. Yapı malzemelerinden gelen gama radyasyonu ölçülerek, doğal radyoçekirdek yoğunlukları (CRa, CTh ve CK), radyum eşdeğer dozu (Raeq), harici risk indisi (Hex), bina içi özgül doz oranları (D) ve yıllık etkin doz (DE) değerleri hesaplanmıştır. Doğal radyoçekirdek (226Ra ve 232Th) yoğunlukları olağan sınırlar içerisinde ve izin verilen en büyük değerlerin altındadır. En küçük Hex değeri 0.15 (kum için) iken, en büyüğü ise 0,5'tir (kızıl tuğla için). DE parametresi 0,9 μSv/y – 3,5 μSv/y aralığında ve izin verilen en büyük değerin altında olduğundan, incelenen materyallerin, taban, tavan, vb. yerlerin kaplanmasında kullanılmasının yanı sıra yeni yapıların iç ve dış kısımlarında da kullanılması uygundur.

References

  • [1] Stoulos S., Manolopoulo M., Papastefanou C., 2003. Assessment of natural radiation exposure and radon exhalation from building materials in Greece, Journal of Environmental Radioactivity, 69 (3): 225–240.
  • [2] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, 2000. Sources, Effects and Risks of Ionizing Radiation. 2000 Report to the General Assembly with Annex B: Exposures from Natural Sources of Radiation. United Nations, New York.
  • [3] UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation, 1977. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly with Annex B: Natural Sources of Radiation. United Nations, New York.
  • [4] American Society for Testing Materials (ASTM). Standard method for sampling surface soils for radionuclides. Report No. C (Philadelphia, PA: ASTM) pp. 983–998 (1983).
  • [5] American Society for Testing Materials (ASTM). Recommended practice for investigation and sampling soil and rock for engineering purposes. Report No. D (Philadelphia, PA: ASTM) Ann. Book of ASTM Standards (04.08) 420; pp. 109–113 (1986).
  • [6] GENIE-2000 Basic Spectroscopy (Standalone) V1.2A Copyright (c) 1997, Canberra Industries.
  • [7] Uosif M.A.M., El-Taher A., Abbady G.A., 2008. Radiological significance of beach sand used for climatotherapy from safaga, Egypt, Radiation Protection Dosimetry, 131 (3): 331–339.
  • [8] Hayambu P., Zaman M.B., Lubaba N.C.H., Munsanje S.S., Muleya D., 1995. Natural radioactivity in Zambian building materials collected from Lusaka, Journal of Radioanalytical and Nuclear Chemistry, 199 (3): 229–238.
  • [9] Beretka J., Mathew P.J., 1985. Natural radioactivity of Australian building materials, industrial wastes and by- products, Health Physics, 48 (1): 87- 95.
  • [10] Righi S., Bruzzi L., 2006. Natural radioactivity and radon exhalation in building materials used in Italian dwellings, Journal of Environmental Radioactivity, 88 (2): 158–170.
  • [11] Amrani D., Tahtat M., 2001. Natural radioactivity in Algerian building materials, Applied Radiation and Isotopes, 54 (4): 687–689.
  • [12] Mantazul I., Chowdury M.N., Alam A.K., 1998. Concentration of radionuclides in building and ceramic materials of Bangladesh and evaluation of radiation hazard, Journal of Radioanalytical and Nuclear Chemistry, 231(1–2): 117–121.
  • [13] Malanca A., Pessina V., Dallara G., Luce N.C., Gaidol L., 1995. Natural radioactivity in building materials from Brazilian state of Espirito Santo, Applied Radiation and Isotope, 46 (12): 1387– 1392.
  • [14] Sharaf M., Mansy M., El Sayed A., Abbas E., 1999. Natural radioactivity and radon exhalation rates in building materials used in Egypt, Radiation Measurements, 31 (1): 491–495.
  • [15] Kumar A., Kumar M., Singh B., Singh S., 2003. Natural activities of 238U, 232Th and 40K in some Indian building materials, Radiation Measurements, 36 (1): 465–469.
  • [16] Bou-Rabee F., Bem H., 1996. Natural radioactivity in building materials utilized in the state of Kuwait, Journal of Radioanalytical and Nuclear Chemistry, 213 (2): 143–149.
  • [17] Ibrahim N., 1999. Natural activity of 238U, 232Th and 40K in building materials, Journal of Environmental Radioactivity, 43 (3): 255–558.
  • [18] Ahmad M.N., Hussein A.J.A., 1997. Natural radioactivity in Jordanian building materials and the associated radiation hazards, Journal of Environmental Radioactivity, 39 (1): 9–22.
  • [19] Ngachin M., Garavaglia M., Giovani C., Kwato Njock M.G., Nourreddine A., 2007. Assessment of natural radioactivity and associated radiation hazards in some Cameroonian building materials, Radiation Measurements, 42 (1): 61 – 67.
  • [20] El-Tahawy M.S., Higgy R.H., 1995. Natural radioactivity in different types of bricks fabricated and used in Cairo region, Applied Radiation and Isotopes, 46 (12): 1401–1406.
  • [21] Savidou A., Raptis C., Kritidis P., 1996. Study of natural radionuclides and radon emanation in bricks used in the Attica region, Greece, Journal of Environmental Radioactivity, 31 (1): 21–28.
  • [22] Man C.K., Yeung H.S., 1998. Radioactivity contents of building materials used in Hong Kong, Journal of Radioanalytical and Nuclear Chemistry, 232 (1-2): 219–222.
  • [23] Ahmed N.K., 2005. Measurement of natural radioactivity in building materials in Qena city, Upper Egypt, Journal of Environmental Radioactivity, 83 (1): 91–99.
  • [24] Organization for Economic Cooperation and Development, 1979. Exposure to radiation from the natural radioactivity in building materials. OECD, Paris.
There are 24 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Mohamed Uosif This is me

Publication Date December 1, 2011
Published in Issue Year 2011 Volume: 6 Issue: 2

Cite

IEEE M. Uosif, “Specific Activity of 226Ra, 232Th and 40K for Assessment of Radiation Hazards from Building Materials Commonly Used in Upper Egypt”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 6, no. 2, pp. 120–126, 2011.