Araştırma Makalesi
BibTex RIS Kaynak Göster

-

Yıl 2013, Cilt: 8 Sayı: 1, 100 - 105, 10.06.2013

Öz

Radiation fields with high-intensity and high-energy are formed as a result of the interactions of protons with the target or the accelerator components in proton accelerators. Shielding is made for being under permissible dose limit of these radiation fields that effect on radiation workers and public. Shield design taking into consideration radiation limits determinate by the national laws, the state of the accelerator to study normal and abnormal conditions is made according to the highest dose that may occur. As a shield designed, the shielding materials can occur in the form of a single material, the consecutive different materials or a particular alloy of these materials. In this paper, shield thickness was determined by Moyer model, for different materials can be used in shield design of different energy regions (50, 100, 300, 500 and 1000 MeV) of proton accelerator, which is planned to be built of at the Turkish Accelerator Center and thickness values are compared with each other

Kaynakça

  • THM-Türk Hızlandırıcı Merkezi Projesi web sitesi: http://thm.ankara.edu.tr (15 Şubat 2013).
  • Wiedemann, H., 1993. Particle Accelerator Physics, Basic Principles and Linear Beam Dynamics, Pages (25-50), (53-73), (75-116), (265-297).
  • Wilson, E., 2001. Particle Accelerators, Pages (1-20), (138-158), (185-207).
  • Rokni, S. H., Cossairt, J. D., Liu, J. C., 2008. Radiation Shielding at High-Energy Electron and Proton Accelerators, SLAC-PUB-13033, FERMILAB-PUB-07-608-ESH.
  • Magistris, M., Silari, M., 2006. Prompt Radiation, Shielding and Induced Radioactivity in a High- Power 160 MeV Proton Linac, Nuclear Instruments and Methods in Physics Research A, 562: 967-971.
  • Cossairt, J. D., 2011. Radiation Physics for Personnel and Environmental Protection, Fermilab Report TM-1834 Revision 11, Presented at sessions of The U.S Particle Accelerator School.
  • Ipe, N. E., 2010. PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities, PTCOG Report 1.
  • Arnaudon, L., et al., 2006. Linac4 Technical Design Report, CERN-AB-2006-084 ABP/RF.
  • Nakashima, H., OM-L-11 Radiological Safety of Accelerator Facilities, Japan Atomic Energy Research Institute.
  • Moormann, R. Safety and Licencing of the European Spallation Source (ESS), Jül-4136
  • Biarrotte, J., Mueller, A. C., Carluec, B., 2004. PDS-XADS Preliminary Design Studies of an Experimental Accelerator-Driven System, CONTRACTN: FIKW-CT-2001-00179
  • Moyer, B. J., 1962. Method of Calculation of the Shielding Enclosure for the Berkley Bevatron, on Proc. 1st. Int Conf. Shielding around High Energy Accelerators, Presses Universitaines de France, Paris, 65.
  • Stevenson, G., Kuei-Lin, L., Thomas, R. H., 1982. Determination of Transverse Shielding for Proton Accelerators Using the Moyer Model, Healty Phys, 43: 13-29.
  • Tesch, K., 1985. A Simple Estimation of lateral Shielding for Proton Accelerators in the Energy Range from 50 to 1000 MeV, Rad Prot Dos 1, 165-172.
  • Agosteo, S., Silari, M., 2001. Preliminary Shielding Calculations for a 2 GeV Superconducting Proton Linac, European Organisation for Nuclear Research European Laboratory Particle Physics, TECHNICAL MEMORANDUM TIS-RP/TM/2001-028, CERN NUFACT Note 088
  • Battistoni, G., et al., 2011. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics, Nuclear Instruments and Methods in Physics Research B, 269: 2850-2856.
  • Magistris, M., Silari, M., 2005. Shielding Requirements and Induced Radioactivity in the 3.5 GeV SPL, CERN.
  • Hanslik, R., 2006. Sicherheitstechnische Analyse und Auslegungsaspekte von Abschirmungen gegen Teilchenstrahlung am Beispiel von Spllationsanlagen im Megawatt Bereich, Berichte des Forschungszentrums Jülich; 4225 ISSN 0944-2952, Zentralabteilung Technologie D 468 (Diss., Wuppertal, Univ.).
  • Ene, D., 2010. Radioprotection studies for the ESS Superconducting Linear Accelerator Preliminary Estimates, ESS AD Technical Note ESS/AD/0003.
  • Silari, M., 2008. A (Cern) History of Accelerator Shielding, CERN-SC-2008-RP-PP, EDMS: 925026.
  • Court, J. D., Pitcher, E. J., Ferguson, P. D., Russel, G. J., Patton, B. W., 1998. Preliminary Earth Berm Shielding Calculations for The Accelerator Production of Tritium 1700-MeV Accelerator, Published in Proceedings of Topical Meeting on Nuclear Applications of Accelerator Technology, November 16-20, 1997, Albuquerque Nm.
  • T.A.E.K. Radyasyon Güvenliği Yönetmeliği, 2000. İkinci kısım, ikinci bölüm, madde 10-b (RG- 24/3/2000-23999).
  • Rahmi Küçer e-posta: rkucer@hotmail.com

Proton Hızlandırıcılarında Farklı Maddeler İçin Zırh Kalınlıklarının Analitik Yöntemle Belirlenmesi

Yıl 2013, Cilt: 8 Sayı: 1, 100 - 105, 10.06.2013

Öz

Özet: Proton hızlandırıcılarında, protonların hedef veya hızlandırıcı bileşenleri ile yaptığı etkileşmeler sonucu, yüksek yoğunluklu ve yüksek enerjili radyasyon alanları oluşur. Bu radyasyon alanlarının, çalışanlar ve çevre halkı üzerindeki etkisinin izin verilen doz sınırlarında olması için zırhlama yapılır. Zırh tasarımı, ulusal kanunlar ile belirlenen radyasyon limitleri göz önünde bulundurularak hızlandırıcının normal ve anormal çalışma durumunda oluşabilecek en yüksek doz değerlerine göre yapılır. Zırh tasarımı yapılırken, zırh maddesi tek bir maddeden oluşabileceği gibi tabaka şeklinde birbirini takip eden farklı maddelerden veya bu maddelerin özel alaşımından oluşabilir. Bu çalışmada, Türk Hızlandırıcı Merkezi bünyesinde kurulması planlanan proton hızlandırıcısının farklı enerji bölgelerinin (50, 100, 300, 500 ve 1000 MeV) zırh tasarımında kullanılabilecek farklı maddeler için zırh kalınlıkları Moyer modeli ile belirlendi ve kalınlık değerleri birbiri ile karşılaştırıldı.

Anahtar kelimeler: Radyasyondan korunma, proton hızlandırıcı, zırh tasarımı, Moyer modeli.


Determination of Shielding Thicknesses by Using Analytical Method for Different Materials in Proton Accelerators

Abstract: Radiation fields with high-intensity and high-energy are formed as a result of the interactions of protons with the target or the accelerator components in proton accelerators. Shielding is made for being under permissible dose limit of these radiation fields that effect on radiation workers and public. Shield design taking into consideration radiation limits determinate by the national laws, the state of the accelerator to study normal and abnormal conditions is made according to the highest dose that may occur. As a shield designed, the shielding materials can occur in the form of a single material, the consecutive different materials or a particular alloy of these materials. In this paper, shield thickness was determined by Moyer model, for different materials can be used in shield design of different energy regions (50, 100, 300, 500 and 1000 MeV) of proton accelerator, which is planned to be built of at the Turkish Accelerator Center and thickness values are compared with each other.

Key words: Radiation protection, proton accelerators, shielding design, Moyer model.

Kaynakça

  • THM-Türk Hızlandırıcı Merkezi Projesi web sitesi: http://thm.ankara.edu.tr (15 Şubat 2013).
  • Wiedemann, H., 1993. Particle Accelerator Physics, Basic Principles and Linear Beam Dynamics, Pages (25-50), (53-73), (75-116), (265-297).
  • Wilson, E., 2001. Particle Accelerators, Pages (1-20), (138-158), (185-207).
  • Rokni, S. H., Cossairt, J. D., Liu, J. C., 2008. Radiation Shielding at High-Energy Electron and Proton Accelerators, SLAC-PUB-13033, FERMILAB-PUB-07-608-ESH.
  • Magistris, M., Silari, M., 2006. Prompt Radiation, Shielding and Induced Radioactivity in a High- Power 160 MeV Proton Linac, Nuclear Instruments and Methods in Physics Research A, 562: 967-971.
  • Cossairt, J. D., 2011. Radiation Physics for Personnel and Environmental Protection, Fermilab Report TM-1834 Revision 11, Presented at sessions of The U.S Particle Accelerator School.
  • Ipe, N. E., 2010. PTCOG Publications Sub-Committee Task Group on Shielding Design and Radiation Safety of Charged Particle Therapy Facilities, PTCOG Report 1.
  • Arnaudon, L., et al., 2006. Linac4 Technical Design Report, CERN-AB-2006-084 ABP/RF.
  • Nakashima, H., OM-L-11 Radiological Safety of Accelerator Facilities, Japan Atomic Energy Research Institute.
  • Moormann, R. Safety and Licencing of the European Spallation Source (ESS), Jül-4136
  • Biarrotte, J., Mueller, A. C., Carluec, B., 2004. PDS-XADS Preliminary Design Studies of an Experimental Accelerator-Driven System, CONTRACTN: FIKW-CT-2001-00179
  • Moyer, B. J., 1962. Method of Calculation of the Shielding Enclosure for the Berkley Bevatron, on Proc. 1st. Int Conf. Shielding around High Energy Accelerators, Presses Universitaines de France, Paris, 65.
  • Stevenson, G., Kuei-Lin, L., Thomas, R. H., 1982. Determination of Transverse Shielding for Proton Accelerators Using the Moyer Model, Healty Phys, 43: 13-29.
  • Tesch, K., 1985. A Simple Estimation of lateral Shielding for Proton Accelerators in the Energy Range from 50 to 1000 MeV, Rad Prot Dos 1, 165-172.
  • Agosteo, S., Silari, M., 2001. Preliminary Shielding Calculations for a 2 GeV Superconducting Proton Linac, European Organisation for Nuclear Research European Laboratory Particle Physics, TECHNICAL MEMORANDUM TIS-RP/TM/2001-028, CERN NUFACT Note 088
  • Battistoni, G., et al., 2011. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics, Nuclear Instruments and Methods in Physics Research B, 269: 2850-2856.
  • Magistris, M., Silari, M., 2005. Shielding Requirements and Induced Radioactivity in the 3.5 GeV SPL, CERN.
  • Hanslik, R., 2006. Sicherheitstechnische Analyse und Auslegungsaspekte von Abschirmungen gegen Teilchenstrahlung am Beispiel von Spllationsanlagen im Megawatt Bereich, Berichte des Forschungszentrums Jülich; 4225 ISSN 0944-2952, Zentralabteilung Technologie D 468 (Diss., Wuppertal, Univ.).
  • Ene, D., 2010. Radioprotection studies for the ESS Superconducting Linear Accelerator Preliminary Estimates, ESS AD Technical Note ESS/AD/0003.
  • Silari, M., 2008. A (Cern) History of Accelerator Shielding, CERN-SC-2008-RP-PP, EDMS: 925026.
  • Court, J. D., Pitcher, E. J., Ferguson, P. D., Russel, G. J., Patton, B. W., 1998. Preliminary Earth Berm Shielding Calculations for The Accelerator Production of Tritium 1700-MeV Accelerator, Published in Proceedings of Topical Meeting on Nuclear Applications of Accelerator Technology, November 16-20, 1997, Albuquerque Nm.
  • T.A.E.K. Radyasyon Güvenliği Yönetmeliği, 2000. İkinci kısım, ikinci bölüm, madde 10-b (RG- 24/3/2000-23999).
  • Rahmi Küçer e-posta: rkucer@hotmail.com
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Demet Sarıyer Bu kişi benim

Rahmi Küçer Bu kişi benim

Yayımlanma Tarihi 10 Haziran 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE D. Sarıyer ve R. Küçer, “Proton Hızlandırıcılarında Farklı Maddeler İçin Zırh Kalınlıklarının Analitik Yöntemle Belirlenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 8, sy. 1, ss. 100–105, 2013.