Araştırma Makalesi
BibTex RIS Kaynak Göster

Bükülmüş Grafenin Elektronik Özellikleri

Yıl 2016, Cilt: 11 Sayı: 2, 102 - 108, 02.12.2016

Öz

Bu
çalışmada WIEN2k bilgisayar programı kullanılarak ideal ve bükülmüş grafenin
elektron yoğunluğu, durum yoğunluğu ve band yapısı elde edilmiştir. Burada ideal
ve bükülmüş grafenin 2x2x1, 2x3x1 ve 3x2x1
boyutları çalışılmıştır.
Her bir nanoşerit için 100, 200, 300 ve 500 k noktası kullanılmıştır.
Elektronik durum yoğunluğu ve band
yapıları, kristalin yarıiletken özellik sergilediğini göstermektedir.
Yarıiletken özellik gösteren ideal ve ideal olmayan kristallerin yasak band
aralığı, ideale göre ideal olmayan (bükülmüş) kristalde daha büyüktür. İdeal
grafende gözlenen sıfıra çok yakın yasak band aralığı malzemenin metal
özelliğine yatkınlığını ortaya koymaktadır. Ancak, genel anlamda, yarıiletken
özelliğinin dikkat çektiğini gördüğümüz bükülmüş grafenin yasak band aralığı
yaklaşık 0.7-1.9 eV aralığında değer almıştır.

Kaynakça

  • Liu D.,Wu L., Liu Q., Zhou r., Xie A., Chen., Wu M., Zeng L., 2016. Plasmon switching effect based on grapheme nanoribbon pair arrays, Optics Communications, 377: 74–82.
  • Hong X.D., Liang D., Wu P.Z., Zheng H.R., 2016. Facile synthesis and enhanced field emission properties of Cu nanoparticles decorated graphene-based emitters, Diamond & Related Materials, 69: 61–67.
  • Ganji M.D., Tajbakhsh M., Kariminasab M., Alinezhad H., 2016. Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake: A DFT-B3LYPstudy, Physica E, 81: 108–115.
  • Das R., Dhar N., Bandyopadhyay A., Jana D., 2016. Size dependent magnetic and optical properties in diamond shaped grapheme quantum dots: A DFT study, Journal of Physics and Chemistry of Solids, 99: 34–42.
  • Katsnelson K.I., 2007. Graphane: carbon in two dimensions, Materials Today, 10:(1-2), 20-27.
  • https://arxiv.org/pdf/0704.1793v1.pdf (Erişim Tarihi: 30.09.2016).
  • Schwarz K., Blaha P., Madsen G.K.H., 2002. Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications, 147: 71–76.
  • Schwarz K., Blaha P., 2003. Solid state calculations using WIEN2k, Computational Materials Science, 28: 259–273.
  • Schwarz K., Blaha P., Trickey S.B., 2010. Electronic structure of solids with WIEN2k, Molecular Physics, 108: 3147-3166.
  • Perdew J.P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple, Physical Review Letters, 77: 3865-3868.
  • Sofo J.O., Chaudhari A.S., Barber G.D., 2007. Graphane: A two-dimensional hydrocarbon, Physical Review B, 75: 153401(1-4).

Electronic Properties of Buckled Graphene

Yıl 2016, Cilt: 11 Sayı: 2, 102 - 108, 02.12.2016

Öz

In this study,
the electron density, state density and band structure of the ideal and buckled
graphenes have been obtained via WIEN2k software. This study involves 2x2x1,
2x3x1 and 3x2x1 dimensions of ideal and buckled graphenes. For each nanoribbon
100, 200, 300 and 500 k points have been used. Electronic state density and band
structures demonstrate the fact that the crystal displays semiconductive properties.
The forbidden band gap of ideal and non-ideal crystals displaying semiconductive
behaviors is bigger in non-ideal (buckled) crystal than the ideal one. The forbidden
band gap observed in ideal grapheme which is quite close to zero value proves
the tendency of the material towards the metal properties. However, in general
terms the forbidden band gap of buckled graphene which is distinctive with its semiconductive
behavior is approximately between 0.7 and 1.9 eV.

Kaynakça

  • Liu D.,Wu L., Liu Q., Zhou r., Xie A., Chen., Wu M., Zeng L., 2016. Plasmon switching effect based on grapheme nanoribbon pair arrays, Optics Communications, 377: 74–82.
  • Hong X.D., Liang D., Wu P.Z., Zheng H.R., 2016. Facile synthesis and enhanced field emission properties of Cu nanoparticles decorated graphene-based emitters, Diamond & Related Materials, 69: 61–67.
  • Ganji M.D., Tajbakhsh M., Kariminasab M., Alinezhad H., 2016. Tuning the LUMO level of organic photovoltaic solar cells by conjugately fusing graphene flake: A DFT-B3LYPstudy, Physica E, 81: 108–115.
  • Das R., Dhar N., Bandyopadhyay A., Jana D., 2016. Size dependent magnetic and optical properties in diamond shaped grapheme quantum dots: A DFT study, Journal of Physics and Chemistry of Solids, 99: 34–42.
  • Katsnelson K.I., 2007. Graphane: carbon in two dimensions, Materials Today, 10:(1-2), 20-27.
  • https://arxiv.org/pdf/0704.1793v1.pdf (Erişim Tarihi: 30.09.2016).
  • Schwarz K., Blaha P., Madsen G.K.H., 2002. Electronic structure calculations of solids using the WIEN2k package for material sciences, Computer Physics Communications, 147: 71–76.
  • Schwarz K., Blaha P., 2003. Solid state calculations using WIEN2k, Computational Materials Science, 28: 259–273.
  • Schwarz K., Blaha P., Trickey S.B., 2010. Electronic structure of solids with WIEN2k, Molecular Physics, 108: 3147-3166.
  • Perdew J.P., Burke K., Ernzerhof M., 1996. Generalized gradient approximation made simple, Physical Review Letters, 77: 3865-3868.
  • Sofo J.O., Chaudhari A.S., Barber G.D., 2007. Graphane: A two-dimensional hydrocarbon, Physical Review B, 75: 153401(1-4).
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Hasan Yıldırım Bu kişi benim

Seyfettin Çakmak

Yayımlanma Tarihi 2 Aralık 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 11 Sayı: 2

Kaynak Göster

IEEE H. Yıldırım ve S. Çakmak, “Bükülmüş Grafenin Elektronik Özellikleri”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 11, sy. 2, ss. 102–108, 2016.