Araştırma Makalesi
BibTex RIS Kaynak Göster

The Temperature-Dependent Current-Voltage Characteristics of n-AgInSe2/p-Si Heterojunction Diode

Yıl 2018, Cilt: 13 Sayı: 2, 18 - 24, 30.11.2018
https://doi.org/10.29233/sdufeffd.425952

Öz

n-AgInSe2/p-Si
heterojunction diode was fabricated by a successive layer deposition of AgInSe2
thin film on p-type Si. The ideality
factor and saturation current of the diode exhibited temperature dependent
behaviour. The activation energy was calculated by using traditional activation
energy plot. The current mechanism for diode was determined as defect-assisted
tunnelling and carrier recombination. Furthermore, a modified Horvath method
which was firstly presented for n-AgInSe2/p-Si heterojunction here was used for
calculation of activation energy.

Kaynakça

  • K. N. Chopra and A. K. Maini, Thin Films and Their Applications in Military and Civil Sectors. New Delhi: Defence Research and Development Organisation, 2010.
  • J. Tringe, “Trends in thin film photovoltaic technology development [for space application],” IEEE Aerospace Conference Proceedings, vol. 4. pp. 61–68 vol.4, 2000.
  • G. Strasser, “Thin Film Technology for Data Storage Disks,” Vak. Forsch. und Prax., vol. 9, no. 1, pp. 42–46, 1997.
  • A. G. Aberle, “Thin-film solar cells,” Thin Solid Films, vol. 517, no. 17, pp. 4706–4710, 2009.
  • G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors Actuators B. Chem., vol. 23, no. 2–3, pp. 103–109, 1995.
  • R. A. Street, “Thin-film transistors,” Advanced Materials, vol. 21, no. 20. pp. 2007–2022, 2009.
  • M. Ait Aouaj, “AgInSe2 Thin Films Prepared by Electrodeposition Process,” Int. J. Mater. Sci. Appl., vol. 4, no. 1, p. 35, 2015.
  • P. Paul Ramesh, O. M. Hussain, S. Uthanna, B. Srinivasulu Naidu, and P. Jayarama Reddy, “Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions,” Mater. Lett., vol. 34, no. 3–6, pp. 217–221, Mar. 1998.
  • H. Mustafa, D. Hunter, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Synthesis and characterization of AgInSe2 for application in thin film solar cells,” Thin Solid Films, vol. 515, no. 17, pp. 7001–7004, 2007.
  • M. A. Abdullaev, A. B. Alhasov, and D. K. Magomedova, “Fabrication and properties of CuInSe2/AgInSe2/CdS double heterojunction cascade solar cells,” Inorg. Mater., vol. 50, no. 3, pp. 228–232, Mar. 2014.
  • L. C. Chen, Y. C. Ho, R. Y. Yang, J. H. Chen, and C. M. Huang, “Electrodeposited AgInSe 2 onto TiO 2 films for semiconductor-sensitized solar cell application: The influence of electrodeposited time,” Appl. Surf. Sci., vol. 258, no. 17, pp. 6558–6563, 2012.
  • M. Kaleli, D. A. Aldemir, and M. Parlak, “Electric and photoelectric properties of n-AgInSe2/p-Si heterojunction diode fabricated by successive layer deposition,” Appl. Phys. A, vol. 123, no. 9, p. 593, Sep. 2017.
  • P. P. Ramesh, S. Uthanna, B. S. Naidu, and P. J. Reddy, “Characteristics of Ni/nAgInSe2 polycrystalline thin film Schottky barrier diodes,” Thin Solid Films, vol. 292, no. 1–2, pp. 290–292, Jan. 1997.
  • S. Dias, B. Murali, and S. B. Krupanidhi, “Transport properties of solution processed Cu2SnS3/AZnO heterostructure for low cost photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 143, pp. 152–158, 2015.
  • S. Duman, B. Gurbulak, and A. Turut, “Temperature-dependent optical absorption measurements and Schottky contact behavior in layered semiconductor n-type InSe(:Sn),” Appl. Surf. Sci., vol. 253, no. 8, pp. 3899–3905, 2007.
  • V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I ‐ V methods,” J. Appl. Phys., vol. 76, no. 12, pp. 7973–7984, Dec. 1994.
  • Z. J. Horváth, “Evaluation of Schottky junction parameters from current-voltage characteristics exhibiting large excess currents,” Appl. Surf. Sci., vol. 255, no. 3, pp. 743–745, 2008.
  • S. M. Sze and K. N. Kwok, Physics of Semiconductor Devices, 3nd ed. New Jersey: John Wiley & Sons, 2006.
  • B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions. Oxford: Pergamon Press, 1974.
  • F. Chen et al., “Current transport characteristics of SiGeC/Si heterojunction diode,” IEEE Electron Device Lett., vol. 17, no. 12, pp. 589–591, Dec. 1996.
  • S. S. Ou, O. M. Stafsudd, and B. M. Basol, “Current transport mechanisms of electrochemically deposited CdS/CdTe heterojunction,” Solid. State. Electron., vol. 27, no. 1, pp. 21–25, Jan. 1984.
  • M. Kaleli, M. Parlak, and C. Ercelebi, “Studies on device properties of an n-AgIn5Se8/p-Si heterojunction diode,” Semicond. Sci. Technol., vol. 26, no. 10, 2011.
  • F. Ö. Kuş, T. Serin, and N. Serin, “Current transport mechanisms of n-ZnO/p-CuO heterojunctions.pdf,” J. Optoelectron. Adv. Mater., vol. 11, no. 11, pp. 1855–1859, 2009.
  • S. Mridha and D. Basak, “Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications,” Semicond. Sci. Technol., vol. 21, no. 7, pp. 928–932, 2006.
  • S. Majumdar and P. Banerji, “Temperature dependent electrical transport in p-ZnO/n-Si heterojunction formed by pulsed laser deposition,” J. Appl. Phys., vol. 105, no. 4, pp. 1–5, 2009.
  • E. H. Rhoderick and R. H. Williams, Metal-semiconductor contacts. Clarendon Press Oxford, 1988.
  • J. Liang, M. Morimoto, S. Nishida, and N. Shigekawa, “Band structures of Si/InGaP heterojunctions by using surface-activated bonding,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 10, no. 11, pp. 1644–1647, 2013.
  • J. Fischer et al., “Composition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks,” Sol. Energy Mater. Sol. Cells, vol. 126, pp. 88–95, 2014.

n-AgInSe2/p-Si Heteroeklem Diyodunun Sıcaklığa Bağlı Akım-Gerilim Karakteristikleri

Yıl 2018, Cilt: 13 Sayı: 2, 18 - 24, 30.11.2018
https://doi.org/10.29233/sdufeffd.425952

Öz


n-AgInSe2/p-Si heteroeklem diyodu, AgInSe2
ince filminin, p-tipi Si üzerine ardıl tabaka biriktirme yöntemi ile imal
edilmiştir. Diyodun idealite çarpanı ve doyma akımı sıcaklık bağlı davranış
göstermiştir. Aktivasyon enerjisi, geleneksel aktivasyon enerji grafiği
kullanılarak hesaplanmıştır. Akım mekanizmaları kusur-destekli tünelleme ve
taşıyıcı rekombinasyonu olarak belirlenmiştir. Ayrıca aktivasyon enerjisini
hesaplamak için değiştirilmiş Horvath yöntemi, n-AgInSe2/p-Si
heteroeklemi için ilk defa burada sunulmuştur.

Kaynakça

  • K. N. Chopra and A. K. Maini, Thin Films and Their Applications in Military and Civil Sectors. New Delhi: Defence Research and Development Organisation, 2010.
  • J. Tringe, “Trends in thin film photovoltaic technology development [for space application],” IEEE Aerospace Conference Proceedings, vol. 4. pp. 61–68 vol.4, 2000.
  • G. Strasser, “Thin Film Technology for Data Storage Disks,” Vak. Forsch. und Prax., vol. 9, no. 1, pp. 42–46, 1997.
  • A. G. Aberle, “Thin-film solar cells,” Thin Solid Films, vol. 517, no. 17, pp. 4706–4710, 2009.
  • G. Sberveglieri, “Recent developments in semiconducting thin-film gas sensors,” Sensors Actuators B. Chem., vol. 23, no. 2–3, pp. 103–109, 1995.
  • R. A. Street, “Thin-film transistors,” Advanced Materials, vol. 21, no. 20. pp. 2007–2022, 2009.
  • M. Ait Aouaj, “AgInSe2 Thin Films Prepared by Electrodeposition Process,” Int. J. Mater. Sci. Appl., vol. 4, no. 1, p. 35, 2015.
  • P. Paul Ramesh, O. M. Hussain, S. Uthanna, B. Srinivasulu Naidu, and P. Jayarama Reddy, “Photovoltaic performance of p-AgInSe2/n-CdS thin film heterojunctions,” Mater. Lett., vol. 34, no. 3–6, pp. 217–221, Mar. 1998.
  • H. Mustafa, D. Hunter, A. K. Pradhan, U. N. Roy, Y. Cui, and A. Burger, “Synthesis and characterization of AgInSe2 for application in thin film solar cells,” Thin Solid Films, vol. 515, no. 17, pp. 7001–7004, 2007.
  • M. A. Abdullaev, A. B. Alhasov, and D. K. Magomedova, “Fabrication and properties of CuInSe2/AgInSe2/CdS double heterojunction cascade solar cells,” Inorg. Mater., vol. 50, no. 3, pp. 228–232, Mar. 2014.
  • L. C. Chen, Y. C. Ho, R. Y. Yang, J. H. Chen, and C. M. Huang, “Electrodeposited AgInSe 2 onto TiO 2 films for semiconductor-sensitized solar cell application: The influence of electrodeposited time,” Appl. Surf. Sci., vol. 258, no. 17, pp. 6558–6563, 2012.
  • M. Kaleli, D. A. Aldemir, and M. Parlak, “Electric and photoelectric properties of n-AgInSe2/p-Si heterojunction diode fabricated by successive layer deposition,” Appl. Phys. A, vol. 123, no. 9, p. 593, Sep. 2017.
  • P. P. Ramesh, S. Uthanna, B. S. Naidu, and P. J. Reddy, “Characteristics of Ni/nAgInSe2 polycrystalline thin film Schottky barrier diodes,” Thin Solid Films, vol. 292, no. 1–2, pp. 290–292, Jan. 1997.
  • S. Dias, B. Murali, and S. B. Krupanidhi, “Transport properties of solution processed Cu2SnS3/AZnO heterostructure for low cost photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 143, pp. 152–158, 2015.
  • S. Duman, B. Gurbulak, and A. Turut, “Temperature-dependent optical absorption measurements and Schottky contact behavior in layered semiconductor n-type InSe(:Sn),” Appl. Surf. Sci., vol. 253, no. 8, pp. 3899–3905, 2007.
  • V. Aubry and F. Meyer, “Schottky diodes with high series resistance: Limitations of forward I ‐ V methods,” J. Appl. Phys., vol. 76, no. 12, pp. 7973–7984, Dec. 1994.
  • Z. J. Horváth, “Evaluation of Schottky junction parameters from current-voltage characteristics exhibiting large excess currents,” Appl. Surf. Sci., vol. 255, no. 3, pp. 743–745, 2008.
  • S. M. Sze and K. N. Kwok, Physics of Semiconductor Devices, 3nd ed. New Jersey: John Wiley & Sons, 2006.
  • B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions. Oxford: Pergamon Press, 1974.
  • F. Chen et al., “Current transport characteristics of SiGeC/Si heterojunction diode,” IEEE Electron Device Lett., vol. 17, no. 12, pp. 589–591, Dec. 1996.
  • S. S. Ou, O. M. Stafsudd, and B. M. Basol, “Current transport mechanisms of electrochemically deposited CdS/CdTe heterojunction,” Solid. State. Electron., vol. 27, no. 1, pp. 21–25, Jan. 1984.
  • M. Kaleli, M. Parlak, and C. Ercelebi, “Studies on device properties of an n-AgIn5Se8/p-Si heterojunction diode,” Semicond. Sci. Technol., vol. 26, no. 10, 2011.
  • F. Ö. Kuş, T. Serin, and N. Serin, “Current transport mechanisms of n-ZnO/p-CuO heterojunctions.pdf,” J. Optoelectron. Adv. Mater., vol. 11, no. 11, pp. 1855–1859, 2009.
  • S. Mridha and D. Basak, “Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications,” Semicond. Sci. Technol., vol. 21, no. 7, pp. 928–932, 2006.
  • S. Majumdar and P. Banerji, “Temperature dependent electrical transport in p-ZnO/n-Si heterojunction formed by pulsed laser deposition,” J. Appl. Phys., vol. 105, no. 4, pp. 1–5, 2009.
  • E. H. Rhoderick and R. H. Williams, Metal-semiconductor contacts. Clarendon Press Oxford, 1988.
  • J. Liang, M. Morimoto, S. Nishida, and N. Shigekawa, “Band structures of Si/InGaP heterojunctions by using surface-activated bonding,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 10, no. 11, pp. 1644–1647, 2013.
  • J. Fischer et al., “Composition dependent characterization of copper indium diselenide thin film solar cells synthesized from electrodeposited binary selenide precursor stacks,” Sol. Energy Mater. Sol. Cells, vol. 126, pp. 88–95, 2014.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Durmuş Aldemir 0000-0003-4819-840X

Murat Kaleli 0000-0002-3290-2020

Yayımlanma Tarihi 30 Kasım 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 13 Sayı: 2

Kaynak Göster

IEEE D. Aldemir ve M. Kaleli, “The Temperature-Dependent Current-Voltage Characteristics of n-AgInSe2/p-Si Heterojunction Diode”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 13, sy. 2, ss. 18–24, 2018, doi: 10.29233/sdufeffd.425952.