Araştırma Makalesi
BibTex RIS Kaynak Göster

Nar (Punica granatum L.) Çeşitlerinin SSR Markörleri ile Moleküler Karakterizasyonu

Yıl 2019, Cilt: 14 Sayı: 2, 345 - 351, 30.11.2019
https://doi.org/10.29233/sdufeffd.616809

Öz

Nar,
Lythraceae familyasına ait tropik ve subtropik iklim kuşağında yetiştirilen bir
meyve olarak bilinmektedir. Çalışma kapsamında Akdeniz Bölgesi Antalya ilinde
yer alan Batı Akdeniz Tarımsal Araştırma Enstitüsü’nden 10 çeşit nar ve küçük
özel mülk bahçesinden 1 çeşit nar alınarak moleküler analizler için
kullanılmıştır. Bu amaçla genotiplere ait numuneler uygun koşullarda alındıktan
sonra moleküler analizleri gerçekleştirilmiştir. SSR markörleri ile yapılan
analizler sonucunda UPGMA kümeleme metoduna göre nar çeşitleri arasında iki ana
grup ortaya çıkmış ve %65 oranında benzerlik gösterdiği belirlenmiştir. İlk ana
grup kendi içinde 4 alt gruptan meydana gelmiştir. İlk alt grupta Hicaz, ikinci
alt grupta Aşınar, Batem Onur, Ernar, Batem Hicaz, üçüncü alt grupta Beynarı ve
dördüncü alt grupta Batem Esin, Batem Yılmaz ve Ekşilik yer almıştır. İkinci
ana grup 2 alt gruba ayrılmış olup Katırbaşı ile Fellahyemez farklı gruplarda
yer almaktadır. Batem Onur ve Ernar çeşitlerini birbirlerinden ayırt edecek
polimorfizmler üretilemediğinden bu iki çeşit bir arada gruplanmıştır. Hicaz,
Beynarı, Ekşilik, Katırbaşı ve Fellahyemez çeşitleri tek başına bir alt grup
oluşturmuştur. Çalışmada Aşınar ve Batem Onur-Ernar, Batem Esin ve Batem Yılmaz
arasında yakın genetik benzerlik olduğu gözlemlenmiştir. Nar türüne ait SSR
bulgularının, gelecekteki ıslah ve koruma çalışmalarında kullanılabilecek en
uygun genotiplerin belirlenmesine yardımcı olacağı beklenmektedir. 

Kaynakça

  • [1] K. Glozer, and L. Ferguson, “Pomegranate Production in Afghanistan,” UCDAVIS College of Agricultural and Environmental Sciences, 1-32, 2008.
  • [2] P. Broun and S. D. Tanksley, “Characterization and genetic mapping of simple repeat sequences in the tomato genome,” Molecular and General Genetics MGG, 250 (1), 39-49, 1996.
  • [3] W. W. Powell, K. W. Koput, and L. Smith-Doerr, “Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology,” Administerative Science Quarterly, 41 (1), 116-145, 1996.
  • [4] J. S. Beckmann, and M. Soller, “Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites,” Nature Biotechnology, 8, 930-932, 1990.
  • [5] K. Weising, D. Kaemmer, J. T. Epplen, F. Weigand, M. Saxena, and G. Kahl, “DNA fingerprinting of Ascochyta rabiei with synthetic oligodeoxynucleotides,” Current Genetics, 19 (6), 483-489, 1991.
  • [6] G. Cipriani, M.T. Marrazzo, R. Marconi, A. Cimato, R. Testolin, “Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars”, Theoretical and Applied Genetics, 104(2-3), 223-228, 2002.
  • [7] K.M. Sefc, M.S. Lopes, D. Mendonça, M.R.D. Santos, M.L.D.C. Machado, A.D.C. Machado, “Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees,” Molecular Ecology, 9(8), 1171-1173, 2000.
  • [8] F. Carriero, G. Fontanazza, F. Cellini, G. Giorio, “Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.)”, Theoretical and Applied Genetics, 104(2-3), 301-307, 2002.
  • [9] S.C. Hokanson, A.K. Szewc-McFadden, W.F. Lamboy, J.R. McFerson, “Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection,” Theoretical and Applied Genetics, 97(5-6), 671-683, 1998.
  • [10] N.R. Castillo, B.M. Reed, J. Graham, F. Fernández-Fernández, N.V. Bassil, “Microsatellite markers for raspberry and blackberry,” Journal of the American Society for Horticultural Science, 135(3), 271-278, 2010.
  • [11] R. Liebhard, L. Gianfranceschi, B. Koller, C.D. Ryder, R. Tarchini, E. Van de Weg, C. Gessler, “Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.),” Molecular Breeding, 10(4), 217-241, 2002.
  • [12] D. Venable, G. Miro-Quesada, J. Calley, E. Monson, L. He, “High-throughput and quantitative detection of residual NS0 and CHO host cell genomic DNA,” BioProcess International, 5(6), 56-61, 2007.
  • [13] E. Dirlewanger, P. Cosson, M. Tavaud, M. Aranzana, C. Poizat, A. Zanetto, P. Arús, and P. Laigret, “Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.),” Theoretical and Applied Genetics, 105 (1), 127-138, 2002.
  • [14] D. C. Bittel, N. Kibiryeva, S. M. Sell, T. V. Strong, and M. G. Butler, “Whole genome microarray analysis of gene expression in Prader–Willi syndrome,” American Journal of Medical Genetics, 143 (5), 430-442, 2007.
  • [15] H. W. Wagner, and K. M. Sefc, “Identity 1.0. Centre for Applied Genetics,” Centre for Applied genetics University of Agricultural Sciences, 3 (9), 1999.
  • [16] E. Minch, A. Ruiz-Linares, D. Goldstein, M. Feldman, and L. L. Cavalli-Sforza. (1995). MICROSAT Version 1.4d: a computer program for calculating variousstatistics on microsatellite allele data, [Online]. Available: http://hpgl.stanford.edu/projects/microsat/
  • [17] M. Nei, “Estimation of average heterozygosity and genetic distance for small number of individuals,” Genetics, 89 (3), 583-590, 1978.
  • [18] F. J. Rohlf, NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Vol. 1.1 80, Exeter Software, New York, 1994.
  • [19] X. Luo, S. Cao, Z. Hao, L. Hou, D. Cao, J. Zhang, H. Li, J. Niu, H. Xue, and L. Chen, “Analysis of genetic structure in a large sample of pomagranate (Punica granatum L.) using fluorescent SSR markers,” The Journal of Horticultural Science and Biotechnology, 93 (6), 659-665, 2018.
  • [20] A. Zarei, and A. Sahraroo, “Molecular characterization of pomegranate (Punica granatum L.) accessions from Fars Province of Iran using microsatellite markers,” Horticulture, Environment, and Biotechnology, 59 (2), 1-11, 2018.
  • [21] O. Çalışkan, S. Bayazıt, M. Öktem, and A. Ergül, “Evaluation of the genetic diversity of pomegranate accessions from Turkey using new microsatellite markers,” Turkish Journal of Agriculture and Forestry, 41, 142-153, 2017.

Molecular Characterization of Pomegranate (Punica granatum L.) Genotypes with SSR Markers

Yıl 2019, Cilt: 14 Sayı: 2, 345 - 351, 30.11.2019
https://doi.org/10.29233/sdufeffd.616809

Öz

Pomegranate
is known to be a fruit grown in tropical and subtropical climate zone belonging
to Lythraceae family. Within the scope of the study, 10 kind of pomegranates
and a pomegranate from a small private garden have been used for molecular
analyzes from the Western Mediterranean Agricultural Research Institute in the
Antalya Region. To accomplish this objective, samples of genotypes were taken
under appropriate conditions and molecular analyzes were performed. As a result
of analysis with SSR markers, pomegranate assortment has emerged as two main
groups and 65% of the similarity has been detected between the groups as per
the UPGMA method. The first main group consisted of 4 sub-groups. In the first
sub-group Hicaz, in the second subgroup Asi, Batem Onur, Ernar, Batem Hicaz,
the third sub-group Beynarı and the fourth sub-group Batem Esin, Batem Yılmaz
and Ekşilik took place. The second main group is divided into 2 sub-groups. In
the first sub-group Katırbaşı and in the second sub-group Fellahyemez took
place. Polymorphisms that distinguish Batem Onur and Ernar from each other
could not be produced hence these two assortments were grouped together. Hicaz,
Beynar, Ekşilik, Katırbaşı and Fellahyemez types formed a subgroup alone. In
the study, a close correlation between Aşınar and Batem Onur-Ernar, Batem Esin
and Batem Yılmaz has been observed. SSR findings of pomegranate species,
creating a step in the selection of the next breeding parents in determining
the span of pomegranate genotypes for comparison of the genetic collection can
be used in the characterization.

Kaynakça

  • [1] K. Glozer, and L. Ferguson, “Pomegranate Production in Afghanistan,” UCDAVIS College of Agricultural and Environmental Sciences, 1-32, 2008.
  • [2] P. Broun and S. D. Tanksley, “Characterization and genetic mapping of simple repeat sequences in the tomato genome,” Molecular and General Genetics MGG, 250 (1), 39-49, 1996.
  • [3] W. W. Powell, K. W. Koput, and L. Smith-Doerr, “Interorganizational collaboration and the locus of innovation: Networks of learning in biotechnology,” Administerative Science Quarterly, 41 (1), 116-145, 1996.
  • [4] J. S. Beckmann, and M. Soller, “Toward a unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites,” Nature Biotechnology, 8, 930-932, 1990.
  • [5] K. Weising, D. Kaemmer, J. T. Epplen, F. Weigand, M. Saxena, and G. Kahl, “DNA fingerprinting of Ascochyta rabiei with synthetic oligodeoxynucleotides,” Current Genetics, 19 (6), 483-489, 1991.
  • [6] G. Cipriani, M.T. Marrazzo, R. Marconi, A. Cimato, R. Testolin, “Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars”, Theoretical and Applied Genetics, 104(2-3), 223-228, 2002.
  • [7] K.M. Sefc, M.S. Lopes, D. Mendonça, M.R.D. Santos, M.L.D.C. Machado, A.D.C. Machado, “Identification of microsatellite loci in olive (Olea europaea) and their characterization in Italian and Iberian olive trees,” Molecular Ecology, 9(8), 1171-1173, 2000.
  • [8] F. Carriero, G. Fontanazza, F. Cellini, G. Giorio, “Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.)”, Theoretical and Applied Genetics, 104(2-3), 301-307, 2002.
  • [9] S.C. Hokanson, A.K. Szewc-McFadden, W.F. Lamboy, J.R. McFerson, “Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection,” Theoretical and Applied Genetics, 97(5-6), 671-683, 1998.
  • [10] N.R. Castillo, B.M. Reed, J. Graham, F. Fernández-Fernández, N.V. Bassil, “Microsatellite markers for raspberry and blackberry,” Journal of the American Society for Horticultural Science, 135(3), 271-278, 2010.
  • [11] R. Liebhard, L. Gianfranceschi, B. Koller, C.D. Ryder, R. Tarchini, E. Van de Weg, C. Gessler, “Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.),” Molecular Breeding, 10(4), 217-241, 2002.
  • [12] D. Venable, G. Miro-Quesada, J. Calley, E. Monson, L. He, “High-throughput and quantitative detection of residual NS0 and CHO host cell genomic DNA,” BioProcess International, 5(6), 56-61, 2007.
  • [13] E. Dirlewanger, P. Cosson, M. Tavaud, M. Aranzana, C. Poizat, A. Zanetto, P. Arús, and P. Laigret, “Development of microsatellite markers in peach (Prunus persica (L.) Batsch) and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.),” Theoretical and Applied Genetics, 105 (1), 127-138, 2002.
  • [14] D. C. Bittel, N. Kibiryeva, S. M. Sell, T. V. Strong, and M. G. Butler, “Whole genome microarray analysis of gene expression in Prader–Willi syndrome,” American Journal of Medical Genetics, 143 (5), 430-442, 2007.
  • [15] H. W. Wagner, and K. M. Sefc, “Identity 1.0. Centre for Applied Genetics,” Centre for Applied genetics University of Agricultural Sciences, 3 (9), 1999.
  • [16] E. Minch, A. Ruiz-Linares, D. Goldstein, M. Feldman, and L. L. Cavalli-Sforza. (1995). MICROSAT Version 1.4d: a computer program for calculating variousstatistics on microsatellite allele data, [Online]. Available: http://hpgl.stanford.edu/projects/microsat/
  • [17] M. Nei, “Estimation of average heterozygosity and genetic distance for small number of individuals,” Genetics, 89 (3), 583-590, 1978.
  • [18] F. J. Rohlf, NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Vol. 1.1 80, Exeter Software, New York, 1994.
  • [19] X. Luo, S. Cao, Z. Hao, L. Hou, D. Cao, J. Zhang, H. Li, J. Niu, H. Xue, and L. Chen, “Analysis of genetic structure in a large sample of pomagranate (Punica granatum L.) using fluorescent SSR markers,” The Journal of Horticultural Science and Biotechnology, 93 (6), 659-665, 2018.
  • [20] A. Zarei, and A. Sahraroo, “Molecular characterization of pomegranate (Punica granatum L.) accessions from Fars Province of Iran using microsatellite markers,” Horticulture, Environment, and Biotechnology, 59 (2), 1-11, 2018.
  • [21] O. Çalışkan, S. Bayazıt, M. Öktem, and A. Ergül, “Evaluation of the genetic diversity of pomegranate accessions from Turkey using new microsatellite markers,” Turkish Journal of Agriculture and Forestry, 41, 142-153, 2017.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Halime Keriman Çetinkaya Bu kişi benim 0000-0001-5856-5723

Damla Güvercin 0000-0002-6639-3818

Yaşar Karakurt 0000-0003-3914-0652

Yayımlanma Tarihi 30 Kasım 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 14 Sayı: 2

Kaynak Göster

IEEE H. K. Çetinkaya, D. Güvercin, ve Y. Karakurt, “Molecular Characterization of Pomegranate (Punica granatum L.) Genotypes with SSR Markers”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 14, sy. 2, ss. 345–351, 2019, doi: 10.29233/sdufeffd.616809.