Research Article
BibTex RIS Cite

Measurement of Neutron Contamination at Different Points in the Radiotherapy Room

Year 2020, Volume: 15 Issue: 1, 36 - 44, 31.05.2020
https://doi.org/10.29233/sdufeffd.664357

Abstract

Radiotherapy is one of the most important treatment methods used in cancer treatment.. However, during the cancer treatment, the undesired photo-neutron caused by using high energy photon beams (> 7 MV) increases the secondary cancer risk. This causes dose uncertainty due to the neutron contamination in the target volume and other organs around it, and brings out a risk of secondary cancer. In this study, the effect of the square field size and the distance from the isocenter on the neutron dose rate was investigated by using Thermo Scientific RadEye neutron detector in 18 MV photon energy, Elekta Synergy linear accelerator. Moreover, the effect of the field size on the neutron dose rate was investigated at the isocenter, and at a different distance from the isocenter as well as at the inside and the outside of the radiotherapy room door, and the console room. In radiotherapy, dose uncertainty due to neutron contamination caused by photons with 18 MV energy is predicted to increase the risk of secondary cancer. It is concluded that it is crucial to take into consideration of the unwanted photo-neutron dose in the radiation treatment.

References

  • [1] J. I.Spicka, H. S.Kim, D. W. Oh, V. Marable, and K .Fleury, “Equal surface dose compensation,” Med. Dos., 14 (4), 287-290, 1989.
  • [2] F. M.Khan, The Physics of Radiation Theraphy. Philadelphia, PA:Lippincott Williams&Wilkins, 2003, pp. 42-43-92-413
  • [3] Neutron Measurements Around High Energy X-Ray Radiotherapy Machines, American Association of Physicists in Medicine, AAPM - Report 19, 1986, pp.19-21
  • [4] A.Ma, J. Awotwi-Pratt, A. Alghamdi, A. Alfuraih, and M. N. Spyrou, “Monte carlo study of photoneutron production in the varian clinac 2100c linac,”J. Radioanal. Nucl. Ch., 276 (1), 119-123, 2007.
  • [5] J. E. Martin ,Physics for Radiation Protection,Mörlenbach,Germany:Wiley-VHC,2006, (çev. A.G.Tanır, M.H. Bölükdemir, K. Koç). Ankara: Palme Yayıncılık (Eserin orjinali 2006’da yayınlandı), pp- 203.
  • [6] ELEKTA. (2019, Dec 3). Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta-synergy.html
  • [7] C. J. Karzmark, and R. J. Morton, Primer on theory and operation of linear accelerators in radiation therapy (No. FDA--82-8181). Bureau of Radiological Health, 1981, pp.42.
  • [8] Neutron Dedection and Counting (2019, Decm 2). Available: http://www.canberra.com/literature/fundamental-principles/pdf/Neutron-Detection-Counting.pdf
  • [9] O.Karaman, A.G.Tanır, C.Karaman, “Investigation of Photoneutron Contamination From The 18-MV Photon Beam in A Medical Linear Accelerator, ” Mater. Tehnol., 53 (5), 699-704, 2019.
  • [10] A. Mesbahi, H. Ghiasi, and S. R. Mahdavi, “Photoneutron and capture gamma dose equivalent for different room and maze layouts in radiation therapy, ” Radiat. Prot. Dosim, 140 (3), 242-249, 2010.
  • [11] M. Jahangiri, P. Hejazi, S. M. Hashemi, A. Haghparast, and B. Hajizadeh, “The effect of field size and distance from the field center on neutron contamination in medical linear accelerator, ” International Journal of Advanced Biological and Biomedical Research (IJABBR), 3 (1), 97-104, 2015.
  • [12] M. Kralik, K. Turek, and V. Vondracek, “Spectra of photoneutrons produced by high-energy x-ray radiotherapy linacs,” Radiat. Prot. Dosim., 132 (1), 13–17,2008.
  • [13] S. M. Hashemi, B. Hashemi-Malayeri, G. Raisali, P. Shokrani, A. A. Sharafi, and F. Torkzadeh, “Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films, ” J. Radiat. Res., 49 (3), 279–283,2008.
  • [14] A. Kaplan ve İ. Akkurt, “Foton Radyoterapide Medikal LINAC’da Oluşan Fotonötronların Ölçümü,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 1-4, 2006.

Radyoterapı̇ Odasının Farklı Noktalarında Nötron Kirliliğinin Ölçülmesi

Year 2020, Volume: 15 Issue: 1, 36 - 44, 31.05.2020
https://doi.org/10.29233/sdufeffd.664357

Abstract

Radyoterapi, kanser tedavisinde kullanılan en önemli tedavi yöntemlerinden birisidir. Ancak, radyoterapide yüksek enerjili foton ve elektron demetlerinin kullanımı sırasında (>7 MV) lineer hızlandırıcı kafasında bulunan ağır metallerden kaynaklı nötron kirliliği oluşmaktadır. Bu durum, hedef hacimde ve çevresindeki diğer organlarda nötron kirliliğinden kaynaklı doz belirsizliğine neden olmakta ve ikincil kanser riski oluşturmaktadır. Bu çalışmada, 18 MV foton enerjisinde, Elekta Synergy lineer hızlandırıcıda Thermo Scientific Rad Eye NL marka nötron dedektörü ile alan açıklığının ve eşmerkeze olan uzaklığın nötron doz hızına olan etkisi incelenmiştir. Ayrıca, alan açıklığının nötron doz hızı üzerindeki etkisi eşmerkezde, eşmerkezden farklı uzaklıklarda, radyoterapi odası kapısının içi ve dışında, konsol odasında ölçümler alınarak araştırılmıştır. Radyoterapide, 18 MV enerjili fotonların neden olduğu nötron kirliliğinden kaynaklı doz belirsizliğinin ikincil kanser riskini artırabileceği öngörülmüştür. Bu nedenle, radyoterapide istenmeyen fotonötron dozunun dikkate alınmasının çok önemli olduğu sonucuna varılmıştır.

Thanks

Bu çalışma Onur KARAMAN’ın doktora tezinden türetilmiştir. Yazarlar olarak çalışmanın yapılması sırasındaki katkılarından dolayı Yiğit ALİ ÜNCÜ ve Hasan ÖZDOĞAN’a teşekkür ederiz.

References

  • [1] J. I.Spicka, H. S.Kim, D. W. Oh, V. Marable, and K .Fleury, “Equal surface dose compensation,” Med. Dos., 14 (4), 287-290, 1989.
  • [2] F. M.Khan, The Physics of Radiation Theraphy. Philadelphia, PA:Lippincott Williams&Wilkins, 2003, pp. 42-43-92-413
  • [3] Neutron Measurements Around High Energy X-Ray Radiotherapy Machines, American Association of Physicists in Medicine, AAPM - Report 19, 1986, pp.19-21
  • [4] A.Ma, J. Awotwi-Pratt, A. Alghamdi, A. Alfuraih, and M. N. Spyrou, “Monte carlo study of photoneutron production in the varian clinac 2100c linac,”J. Radioanal. Nucl. Ch., 276 (1), 119-123, 2007.
  • [5] J. E. Martin ,Physics for Radiation Protection,Mörlenbach,Germany:Wiley-VHC,2006, (çev. A.G.Tanır, M.H. Bölükdemir, K. Koç). Ankara: Palme Yayıncılık (Eserin orjinali 2006’da yayınlandı), pp- 203.
  • [6] ELEKTA. (2019, Dec 3). Available: https://www.elekta.com/radiotherapy/treatment-delivery-systems/elekta-synergy.html
  • [7] C. J. Karzmark, and R. J. Morton, Primer on theory and operation of linear accelerators in radiation therapy (No. FDA--82-8181). Bureau of Radiological Health, 1981, pp.42.
  • [8] Neutron Dedection and Counting (2019, Decm 2). Available: http://www.canberra.com/literature/fundamental-principles/pdf/Neutron-Detection-Counting.pdf
  • [9] O.Karaman, A.G.Tanır, C.Karaman, “Investigation of Photoneutron Contamination From The 18-MV Photon Beam in A Medical Linear Accelerator, ” Mater. Tehnol., 53 (5), 699-704, 2019.
  • [10] A. Mesbahi, H. Ghiasi, and S. R. Mahdavi, “Photoneutron and capture gamma dose equivalent for different room and maze layouts in radiation therapy, ” Radiat. Prot. Dosim, 140 (3), 242-249, 2010.
  • [11] M. Jahangiri, P. Hejazi, S. M. Hashemi, A. Haghparast, and B. Hajizadeh, “The effect of field size and distance from the field center on neutron contamination in medical linear accelerator, ” International Journal of Advanced Biological and Biomedical Research (IJABBR), 3 (1), 97-104, 2015.
  • [12] M. Kralik, K. Turek, and V. Vondracek, “Spectra of photoneutrons produced by high-energy x-ray radiotherapy linacs,” Radiat. Prot. Dosim., 132 (1), 13–17,2008.
  • [13] S. M. Hashemi, B. Hashemi-Malayeri, G. Raisali, P. Shokrani, A. A. Sharafi, and F. Torkzadeh, “Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films, ” J. Radiat. Res., 49 (3), 279–283,2008.
  • [14] A. Kaplan ve İ. Akkurt, “Foton Radyoterapide Medikal LINAC’da Oluşan Fotonötronların Ölçümü,” Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1), 1-4, 2006.
There are 14 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Onur Karaman 0000-0003-3672-1865

Ayşe Güneş Tanır, Ph.d. 0000-0001-8966-7458

Publication Date May 31, 2020
Published in Issue Year 2020 Volume: 15 Issue: 1

Cite

IEEE O. Karaman and A. G. Tanır, Ph.d., “Radyoterapı̇ Odasının Farklı Noktalarında Nötron Kirliliğinin Ölçülmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 1, pp. 36–44, 2020, doi: 10.29233/sdufeffd.664357.