Research Article
BibTex RIS Cite

Tiyeno [3,2-b]tiyofen Fragmentli Yeni Bir Molekülün Deneysel Çalışmaları ve DFT Hesaplamaları

Year 2020, Volume: 15 Issue: 2, 224 - 236, 29.11.2020
https://doi.org/10.29233/sdufeffd.799005

Abstract

Tiyeno[3,2-b]tiyofen fragmenti kullanılarak yeni bir molekül olan tiyeno[3,2-b]tiyofen-2,5-diilbis[N-(4-klorofenil)metanimin] (TTBM) sentezlendi ve UV-Vis, FTIR, 1H NMR ve LC-MS spektroskopileriyle karakterize edildi. TTBM' nin kuantum kimyasal özellikleri, DFT metodunda B3LYP hibrit fonksyonu ile 6-311G (d, p) temel seti kullanılarak incelendi. TTBM'nin optimize moleküler yapısı, UV, FTIR, HOMO-LUMO enerjileri ve moleküler elektrostatik potansiyel (MEP) özellikleri DFT yöntemi ile çalışıldı. Moleküler yapıdaki titreşimlerin atamaları, potansiyel enerji dağılımlarıyla (PED) birlikte VEDA4 programı kullanılarak gerçekleştirildi. TTBM’in deneysel spektrumları (UV-Vis ve FTIR) teorik sonuçlarla ayrıntılı olarak karşılaştırıldı ve birbiriyle iyi bir uyum içinde olduğu görülmüştür.

References

  • A. Capan and T. Ozturk, “Electrochromic properties of 3-arylthieno[3,2-b]thiophenes,” Synth. Met., 188, 100-103, 2014.
  • K. T. Ilhan, S. Topal, M. S. Eroğlu, and T. Ozturk, “Concise synthesis of 3-alkylthieno[3,2-b]thiophenes; building blocks for organic electronic and optoelectronic materials,” RSC Adv., 9, 38407-38413, 2019.
  • M. E. Cinar, E. Engür, and T. Ozturk, “Synthesis and characterization of organic light-emitting molecules possessing 3 (4-methoxyphenyl)thieno[3,2-b]thiophene and boron,” Org. Commun., 11(2), 68-74, 2018.
  • Y. N. Mabkhot, A. Barakat, A. M. Al-Majid, Z. A. Al-Othman, and A.S. Alamary, “A facile and convenient synthesis of some novel hydrazones, Schiff’s base and Pyrazoles incorporating Thieno[2,3-b]thiophenes,” Int. J. Mol. Sci., 12(11), 7824-7834, 2011.
  • Y. Xu, H. Jiang, T. K. Lau, J. Zhu, J. Wang, X. Lu, X. Zhan, and Y. Lin, “Fused thienobenzene-thienothiophene electron acceptors for organic solar cells,” J. Energy Chem., 37, 58-65, 2019.
  • W. J. Chi, D. Y. Zheng, X. F. Chen, and Z. S. Li, “Optimizing thienothiophene chain lengths of D–π–D hole transport materials in perovskite solar cells for improving energy levels and hole mobility,” J. Mater. Chem. C., 5, 10055-10060, 2017.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al., Gaussian 09, Revision C.01, Gaussian, Inc.,Wallingford CT, 2009.
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS, Wallingford CT, 2009.
  • A. D. Becke, “Density functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98, 5648-5652, 1993.
  • M. H. Jamr’oz, Vibrational Energy Distribution Analysis VEDA4, Warsaw, 2004.
  • R. D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 18, October 2016, Available: http://cccbdb.nist.gov/.
  • J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule, 3(4), 1140-1151, 2019.
  • H. Gokce, N. Ozturk, M. Kazıcı, C. Yorur Goreci, S. Gunes, “Structural, spectroscopic, electronic, nonlinear optical and thermodynamic properties of a synthesized Schiff base compound: A combined experimental and theoretical approach,” J. Mol. Struc., 1136, 288-302, 2017.
  • A. Prlj, B. F. E. Curchod, A. Fabrizio, L. Floryan, and C. Corminboeuf, “Qualitatively incorrect features in the TDDFT spectrum of thiophene-based compounds,” J. Phys. Chem. Lett., 6(1), 13-21, 2015.
  • Y. Mei-Rong, S. Yu, and X. Yong-Jin, “Vibrational spectroscopic, NMR parameters and electronic properties of three 3-phenylthiophene derivatives via density functional theory,” Springerplus, 3, 701-714, 2014.
  • Ü. Ceylan, G. Ozdemir-Tarı, H. Gokce, and E. Agar, “Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl) methylidene] aniline,” J. Mol. Struc., 1110 1-10, 2016.
  • S. Subashchandrabose, H. Saleem, Y. Erdogdu, O. Dereli, V. Thanikachalam and J. Jayabharathi, “Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)-3-methylbutanoic acid,” Spectrochim. Acta Part A, 86, 231-241, 2012.
  • C. Alasalvar, M. S. Soylu, A. Güder, Ç. Albayrak, G. Apaydın, and N. Dilek, “Crystal structure, DFT and HF calculations and radical scavenging activities of (E)-4,6-dibromo-3-methoxy-2-[(3- methoxyphenylimino)methyl]phenol,” Spectrochim. Acta Part A, 125, 319-327, 2014.
  • E. Temel, C. Alasalvar, H. Gokce, A. Güder, Ç. Albayrak, Y. B. Alpaslan, G. Alpaslan, and N. Dilek,“DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol,” Spectrochim. Act. Part A, 136, 534-546, 2015.
  • C. Muthuselvi, S. S. Pandiarajan, B. Ravikumar, S. Athimoolam, N. Srinivasan, and R. V. Krishnakumar, “FT-IR and FT-Raman spectroscopic analyzes of Indeno Quinoxaline derivative crystal,” Asian J. Appl. Scien., 11, 83-91, 2018.
  • J. D. Magdaline and T. Chithambarathanu,“Vibrational spectra (FT-IR, FT-Raman), NBO and HOMO, LUMO studies of 2-thiophene carboxylic acid based on density functional method,” IOSR J. Applied Chem., 8, 6-14, 2015.
  • B. C Pein, N. H. Seong, and D. Dlott, “Vibrational energy relaxation of liquid Aryl-Halides X-C6H5 (X ) F, Cl, Br, I),” J. Phys. Chem. A, 114, 10500–10507, 2010.
  • J. S. Murray and P. Politzer, “The electrostatic potential: An overview,” WIREs Comput. Mol. Scien., 1, 153-163, 2011.

Experimental Studies and DFT Calculations of a Novel Molecule Having Thieno[3,2-b]thiophene Fragment

Year 2020, Volume: 15 Issue: 2, 224 - 236, 29.11.2020
https://doi.org/10.29233/sdufeffd.799005

Abstract

A novel molecule of thieno[3,2-b]thiophene-2,5-diylbis[N-(4-chlorophenyl)methanimine] (TTBM) was synthesized using thieno[3,2-b]thiophene fragment, and characterized using UV-Vis, FTIR, 1H NMR and LC-MS spectroscopy. Quantum chemical properties of TTBM were investigated via DFT method using B3LYP hybrid functional with 6-311G(d,p) basis set. Optimized molecular structure, UV, FTIR, HOMO-LUMO energies and Molecular Electrostatic Potential (MEP) characteristics of TTBM were studied by means of DFT. The assignments of the vibrations in the molecular structure were performed by using the VEDA4 program with potential energy distribution (PED). The experimental spectra of TTBM (UV-Vis and FTIR) were compared in detail with the theoretical results and were seen to be in a good agreement with each other.

References

  • A. Capan and T. Ozturk, “Electrochromic properties of 3-arylthieno[3,2-b]thiophenes,” Synth. Met., 188, 100-103, 2014.
  • K. T. Ilhan, S. Topal, M. S. Eroğlu, and T. Ozturk, “Concise synthesis of 3-alkylthieno[3,2-b]thiophenes; building blocks for organic electronic and optoelectronic materials,” RSC Adv., 9, 38407-38413, 2019.
  • M. E. Cinar, E. Engür, and T. Ozturk, “Synthesis and characterization of organic light-emitting molecules possessing 3 (4-methoxyphenyl)thieno[3,2-b]thiophene and boron,” Org. Commun., 11(2), 68-74, 2018.
  • Y. N. Mabkhot, A. Barakat, A. M. Al-Majid, Z. A. Al-Othman, and A.S. Alamary, “A facile and convenient synthesis of some novel hydrazones, Schiff’s base and Pyrazoles incorporating Thieno[2,3-b]thiophenes,” Int. J. Mol. Sci., 12(11), 7824-7834, 2011.
  • Y. Xu, H. Jiang, T. K. Lau, J. Zhu, J. Wang, X. Lu, X. Zhan, and Y. Lin, “Fused thienobenzene-thienothiophene electron acceptors for organic solar cells,” J. Energy Chem., 37, 58-65, 2019.
  • W. J. Chi, D. Y. Zheng, X. F. Chen, and Z. S. Li, “Optimizing thienothiophene chain lengths of D–π–D hole transport materials in perovskite solar cells for improving energy levels and hole mobility,” J. Mater. Chem. C., 5, 10055-10060, 2017.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, et al., Gaussian 09, Revision C.01, Gaussian, Inc.,Wallingford CT, 2009.
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 5, Semichem Inc., Shawnee Mission KS, Wallingford CT, 2009.
  • A. D. Becke, “Density functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., 98, 5648-5652, 1993.
  • M. H. Jamr’oz, Vibrational Energy Distribution Analysis VEDA4, Warsaw, 2004.
  • R. D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 18, October 2016, Available: http://cccbdb.nist.gov/.
  • J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, “Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core,” Joule, 3(4), 1140-1151, 2019.
  • H. Gokce, N. Ozturk, M. Kazıcı, C. Yorur Goreci, S. Gunes, “Structural, spectroscopic, electronic, nonlinear optical and thermodynamic properties of a synthesized Schiff base compound: A combined experimental and theoretical approach,” J. Mol. Struc., 1136, 288-302, 2017.
  • A. Prlj, B. F. E. Curchod, A. Fabrizio, L. Floryan, and C. Corminboeuf, “Qualitatively incorrect features in the TDDFT spectrum of thiophene-based compounds,” J. Phys. Chem. Lett., 6(1), 13-21, 2015.
  • Y. Mei-Rong, S. Yu, and X. Yong-Jin, “Vibrational spectroscopic, NMR parameters and electronic properties of three 3-phenylthiophene derivatives via density functional theory,” Springerplus, 3, 701-714, 2014.
  • Ü. Ceylan, G. Ozdemir-Tarı, H. Gokce, and E. Agar, “Spectroscopic (FT-IR and UV-Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl) methylidene] aniline,” J. Mol. Struc., 1110 1-10, 2016.
  • S. Subashchandrabose, H. Saleem, Y. Erdogdu, O. Dereli, V. Thanikachalam and J. Jayabharathi, “Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)-3-methylbutanoic acid,” Spectrochim. Acta Part A, 86, 231-241, 2012.
  • C. Alasalvar, M. S. Soylu, A. Güder, Ç. Albayrak, G. Apaydın, and N. Dilek, “Crystal structure, DFT and HF calculations and radical scavenging activities of (E)-4,6-dibromo-3-methoxy-2-[(3- methoxyphenylimino)methyl]phenol,” Spectrochim. Acta Part A, 125, 319-327, 2014.
  • E. Temel, C. Alasalvar, H. Gokce, A. Güder, Ç. Albayrak, Y. B. Alpaslan, G. Alpaslan, and N. Dilek,“DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino)methyl]phenol,” Spectrochim. Act. Part A, 136, 534-546, 2015.
  • C. Muthuselvi, S. S. Pandiarajan, B. Ravikumar, S. Athimoolam, N. Srinivasan, and R. V. Krishnakumar, “FT-IR and FT-Raman spectroscopic analyzes of Indeno Quinoxaline derivative crystal,” Asian J. Appl. Scien., 11, 83-91, 2018.
  • J. D. Magdaline and T. Chithambarathanu,“Vibrational spectra (FT-IR, FT-Raman), NBO and HOMO, LUMO studies of 2-thiophene carboxylic acid based on density functional method,” IOSR J. Applied Chem., 8, 6-14, 2015.
  • B. C Pein, N. H. Seong, and D. Dlott, “Vibrational energy relaxation of liquid Aryl-Halides X-C6H5 (X ) F, Cl, Br, I),” J. Phys. Chem. A, 114, 10500–10507, 2010.
  • J. S. Murray and P. Politzer, “The electrostatic potential: An overview,” WIREs Comput. Mol. Scien., 1, 153-163, 2011.
There are 23 citations in total.

Details

Primary Language English
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Çiğdem Yörür Göreci 0000-0001-7846-5690

Publication Date November 29, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

IEEE Ç. Yörür Göreci, “Experimental Studies and DFT Calculations of a Novel Molecule Having Thieno[3,2-b]thiophene Fragment”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 2, pp. 224–236, 2020, doi: 10.29233/sdufeffd.799005.