Research Article
BibTex RIS Cite

Halojen Atomları ve Siyano Grubunun Hekzasen Molekülünün Optik, Elektronik ve Yük Transfer Özellikleri Üzerine Etkisinin İncelenmesi: Moleküler Dizayn Yöntemi, Yapı-Özellik İlişkisi

Year 2020, Volume: 15 Issue: 2, 330 - 342, 29.11.2020
https://doi.org/10.29233/sdufeffd.811263

Abstract

Bu çalışmada, π-konjugasyon yapısına sahip hekzasen molekülü, farklı halojen atomlar (Flor, Klor, Brom) ve molekülde farklı konumlandırılmış siyano grupları ile dizayn edilmiş, elektronik, optik ve yük transfer özellikleri zamana bağlı ve zamandan bağımsız Yoğunluk Fonksiyon Teorisi (YFT) ile incelenmiştir. Dizayn edilen beş hekzasen türevinin yapı ve özellik arasındaki ilişkiyi kurabilmek için, moleküler geometri, reorganizasyon enerji, HOMO-LUMO orbital enerjileri, iyonizasyon potansiyeli (IP), elektron afinitesi (EA), geometriden dolayı nötr ve yüklü durumlara bağlı olarak bağ uzunluğu değişimi (BUD) üzerine substitüe etkisi incelenmiş ve etkiyi daha iyi anlayabilmek için sonuçlar hekzasen ve antrasen moleküllerin sonuçlarıyla karşılaştırılmıştır. Moleküllerin, elektron enjeksiyon bariyerinin hekzasen molekülünden daha düşük olduğu ve iyi bir boşluk taşıyıcısı olarak bilinen antrasenle kıyaslanabilir derecede etkili boşluk yük transfer oranına sahip olduğu belirtilmiştir. Dizayn edilen hekzasen türevlerinin, optoelektronik alanda potansiyel uygulamalar için ilgi çekebileceğini ve malzeme biliminde umut vaad edeceğini umuyorum.

References

  • [1] K. Takimiya, S. Shinamura, I. Osaka, and E. Miyazaki, “Thienoacene-based organic semiconductors,” Adv. Mater., 23(38), 4347–4370, 2011.
  • [2] J. E. Anthony, “Functionalized acenes and heteroacenes for organic electronics,” Chem. Rev., 106(12), 5028–5048, 2006.
  • [3] C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, “Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics,” Chem. Rev., 112(4), 2208–2267, 2012.
  • [4] L. Wang, G. Duan, Y. Ji, and H. Zhang, “Electronic and charge transport properties of peri-xanthenoxanthene: The effects of heteroatoms and phenyl substitutions,” J. Phys. Chem. C, 116(43), 22679–22686, 2012.
  • [5] C. R. Newman, C. D. Frisbie, D. A. Da Silva Filho, J. L. Brédas, P. C. Ewbank, and K. R. Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chem. Mater., 16(23), 4436–4451, 2004.
  • [6] M. K. Corpinot and D. K. Bučar, “A Practical Guide to the Design of Molecular Crystals,” Crys. Growth Des., 19(2), 1426–1453, 2019.
  • [7] L. Huang, D. Rocca, S. Baroni, K. E. Gubbins, and M. B. Nardelli, “Molecular design of photoactive acenes for organic photovoltaics,” J. Chem. Phys., 130(19), 2009.
  • [8] J. Roncali, “Molecular engineering of the band gap of π-conjugated systems: Facing technological applications,” Macromol. Rapid. Commun., 28(17), 1761–1775, 2007.
  • [9] R. Jin and A. Irfan, “Molecular design of organic small molecules based on diindole-diimide with fused aromatic heterocycles as donors for organic solar cells,” RSC Adv., 7(63), 39899–39905, 2017.
  • [10] Y. Cheng, Y. Qi, Y. Tang, C. Zheng, Y. Wan, W. Huang and R. Chen, “Controlling Intramolecular Conformation through Nonbonding Interaction for Soft-Conjugated Materials: Molecular Design and Optoelectronic Properties,” J. Phys. Chem. Lett., 7(18), 3609–3615, 2016.
  • [11] J. Vollbrecht, H. Bock, C. Wiebeler, S. Schumacher, and H. Kitzerow, “Polycyclic aromatic hydrocarbons obtained by lateral core extension of mesogenic perylenes: Absorption and optoelectronic properties,” Chem. Eur. J., 20(38), 12026–12031, 2014.
  • [12] S. Armakovi, S. J. Armakovi, and S. S. Pelemiš, “Transport Properties of Pentacene, Hexacene and Their Bn Analogues,” Contemporary materials, 1(7), 37–44, 2017.
  • [13] M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, and F. Wudl, “Oligoacenes: Theoretical prediction of open-shell singlet diradical ground states,” J. Am. Chem. Soc., 126(24), 7416–7417, 2004.
  • [14] H. Qu and C. Chi, “Synthetic Chemistry of Acenes and Heteroacenes,” Current Organic Chemistry, 14(18), 2070–2108, 2010.
  • [15] T. J. Chow, “Semiconducting Properties,” Acc. Chem. Res., 46(7), 1606–1615, 2013.
  • [16] Y. H. Park, Y. H. Kim, S. K. Kwon, I. S. Koo, and K. Yang, “Theoretical studies on dicyanoanthracenes as organic semiconductor materials: Reorganization energy,” Bull. Korean Chem. Soc., 31(6), 1649–1656, 2010.
  • [17] J. L. Brédas, “Relationship between band gap and bond length alternation in organic conjugated polymers,” J. Chem. Phys., 82(8), 3808–3811, 1985.
  • [18] J. P. Ferraris and T. L. Lambert, “Poly-4-dicyanomethylene-4H-cyclopenta[2,1-b ;3,4=b’]dithiophene (PCDM),” J. Chem. Soc., Chem. Commun., 1268–1270, 1991.
  • [19] T. L. Lambert and J. P. Ferraris, “Narrow Band Gap Polymers : polycyclopenta [ 2 , 1-b ; 3 , 4-b ’] dithiophen-4-one,” J. Chem. Soc., Chem. Commun., 752–754, 1991.
  • [20] J. L. Brédas, A. J. Heeger, and F. Wudl, “Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives,” J. Chem. Phys., 85(8), 4673–4678, 1986.
  • [21] Y. C. Chang and I. Chao, “An important key to design molecules with small internal reorganization energy: Strong nonbonding character in frontier orbitals,” J. Phys. Chem. Lett., 1(1), 116–121, 2010.
  • [22] Y. Kashiwagi, K. Ohkubo, J. A. McDonald, I. M. Blake, M. J. Crossley, Y. Araki, O. Ito, H. Imahori and S. Fukuzumi, “Long-lived charge-separated state produced by photoinduced electron transfer in a zinc imidazoporphyrin-C60 dyad,” Org. Lett., 5(15), 2719–2721, 2003.
  • [23] W. Diirckheimer, “Tetracyclines chemistry biochemistry and structure-activity relations,”Angew. Chem. Int. Ed., 14(11), 721–774, 1975.
  • [24] Y. A. Berlin, G. R. Hutchison, P. Rempala, M. A. Ratner and J. Michl, “Charge hopping in molecular wires as a sequence of electron-transfer reactions,” J. Phys. Chem. A, 107(19), 3970–3980, 2003.
  • [25] E. V. Tsiper, Z. G. Soos, W. Gao, and A. Kahn, “Eletronic polarization at surfaces and thin films of organic molecular crystals: PTCDA,” Chemical Physics Letters, 360(12), 47–52, 2002.
  • [26] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, 37(2), 785–789, 1988.
  • [27] B. Miechlic, A. Savin, H. Stoll, H. Preuss, “Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr,” Chemical Physics Letter, 157(3), 200–206, 1989.
  • [28] J. Antony and S. Grimme, “Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules,” Phys. Chem. Chem. Phys., 8(45), 5287–5293, 2006.
  • [29] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris, “A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements,” J. Chem. Phys., 89(4), 2193–2218, 1988.
  • [30] R. A. Marcus and N. Sutin, “Electron transfers in chemistry and biology,” BBA-Bioenergetics, 811(3), 265–322, 1985.
  • [31] J. P. Calbert, D. A. S. Filho, J. Cornil, and J. L. Bre, “Organic semiconductors : A theoretical characterization of the basic parameters governing charge transport,” PNAS, 99(9), 5804–5809 2002.
  • [32] B. C. Lin, C. P. Cheng, Z. Q. You and C. P. Hsu, “Charge Transport Proper ties of Tris ( 8-hydroxyquinolinato ) aluminum ( III ): Why It Is an Electron Transporter,” J. Am. Chem. Soc., 127(1), 66–67, 2005.
  • [33] Y. Mao, M. Head-Gordon, and Y. Shao, “Unraveling substituent effects on frontier orbitals of conjugated molecules using an absolutely localized molecular orbital based analysis,” Chem. Sci., 9(45), 8598–8607, 2018.
  • [34] H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys., 48(11) , 4729–4733, 1977.
  • [35] W. C. Chen and I. Chao, “Molecular orbital-based design of π-conjugated organic materials with small internal reorganization energy: Generation of nonbonding character in frontier orbitals,” J. Phys. Chem. C, 118(35), 20176–20183, 2014.
  • [36] S. Kera et al., “Experimental Reorganization Energies of Pentacene and Per fluoropentacene: Eff ects of Perfluorination,” J. Phys. Chem. C, 117(43), 22428–22437, 2013.
  • [37] R. Mondal, C. Tönshoff, D. Khon, D. C. Neckers, and H. F. Bettinger, “Synthesis, stability, and photochemistry of pentacene, hexacene, and heptacene: A matrix isolation study,” J. Am. Chem. Soc., 131(40), 14281–14289, 2009.

Studying the Effect of Halogen Atoms and the Cyano Groups on Optical, Electronic and Charge Transfer Properties of Hexasene Molecule: Molecular Design Methods, Structure-Property Relationship

Year 2020, Volume: 15 Issue: 2, 330 - 342, 29.11.2020
https://doi.org/10.29233/sdufeffd.811263

Abstract

In this study, the π-conjugated hexacene molecule was designed with different halogen atoms (Fluorine, Chlorine, Bromine), differently positioned cyano groups and its electronic, optical and charge transfer properties were investigated by time-dependent and time-independent Density Functional Theory (DFT). The substituent effect on the molecular geometry, reorganization energy, frontier orbitals, ionization potential (IP) and bond length alternation (BLA) depending on nötr and charged states, electronic affinity (EA) of the five molecules were investigated to establish the relationship between structures and properties .To gain a better understanding of the substituent effect on the charge transport property, the results of designed molecules were compared with hexacene and antracene molecules. The electron injection barrier of the new designed molecules is lower than hexacene molecule and have more effective hole charge transfer property which is comparable to that of antracene known as a good hole charge carrier. I belived that, new designed hexacene derivatives may be used as optoelectronic devices which could attract great attention in material sciences.

References

  • [1] K. Takimiya, S. Shinamura, I. Osaka, and E. Miyazaki, “Thienoacene-based organic semiconductors,” Adv. Mater., 23(38), 4347–4370, 2011.
  • [2] J. E. Anthony, “Functionalized acenes and heteroacenes for organic electronics,” Chem. Rev., 106(12), 5028–5048, 2006.
  • [3] C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, “Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics,” Chem. Rev., 112(4), 2208–2267, 2012.
  • [4] L. Wang, G. Duan, Y. Ji, and H. Zhang, “Electronic and charge transport properties of peri-xanthenoxanthene: The effects of heteroatoms and phenyl substitutions,” J. Phys. Chem. C, 116(43), 22679–22686, 2012.
  • [5] C. R. Newman, C. D. Frisbie, D. A. Da Silva Filho, J. L. Brédas, P. C. Ewbank, and K. R. Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chem. Mater., 16(23), 4436–4451, 2004.
  • [6] M. K. Corpinot and D. K. Bučar, “A Practical Guide to the Design of Molecular Crystals,” Crys. Growth Des., 19(2), 1426–1453, 2019.
  • [7] L. Huang, D. Rocca, S. Baroni, K. E. Gubbins, and M. B. Nardelli, “Molecular design of photoactive acenes for organic photovoltaics,” J. Chem. Phys., 130(19), 2009.
  • [8] J. Roncali, “Molecular engineering of the band gap of π-conjugated systems: Facing technological applications,” Macromol. Rapid. Commun., 28(17), 1761–1775, 2007.
  • [9] R. Jin and A. Irfan, “Molecular design of organic small molecules based on diindole-diimide with fused aromatic heterocycles as donors for organic solar cells,” RSC Adv., 7(63), 39899–39905, 2017.
  • [10] Y. Cheng, Y. Qi, Y. Tang, C. Zheng, Y. Wan, W. Huang and R. Chen, “Controlling Intramolecular Conformation through Nonbonding Interaction for Soft-Conjugated Materials: Molecular Design and Optoelectronic Properties,” J. Phys. Chem. Lett., 7(18), 3609–3615, 2016.
  • [11] J. Vollbrecht, H. Bock, C. Wiebeler, S. Schumacher, and H. Kitzerow, “Polycyclic aromatic hydrocarbons obtained by lateral core extension of mesogenic perylenes: Absorption and optoelectronic properties,” Chem. Eur. J., 20(38), 12026–12031, 2014.
  • [12] S. Armakovi, S. J. Armakovi, and S. S. Pelemiš, “Transport Properties of Pentacene, Hexacene and Their Bn Analogues,” Contemporary materials, 1(7), 37–44, 2017.
  • [13] M. Bendikov, H. M. Duong, K. Starkey, K. N. Houk, E. A. Carter, and F. Wudl, “Oligoacenes: Theoretical prediction of open-shell singlet diradical ground states,” J. Am. Chem. Soc., 126(24), 7416–7417, 2004.
  • [14] H. Qu and C. Chi, “Synthetic Chemistry of Acenes and Heteroacenes,” Current Organic Chemistry, 14(18), 2070–2108, 2010.
  • [15] T. J. Chow, “Semiconducting Properties,” Acc. Chem. Res., 46(7), 1606–1615, 2013.
  • [16] Y. H. Park, Y. H. Kim, S. K. Kwon, I. S. Koo, and K. Yang, “Theoretical studies on dicyanoanthracenes as organic semiconductor materials: Reorganization energy,” Bull. Korean Chem. Soc., 31(6), 1649–1656, 2010.
  • [17] J. L. Brédas, “Relationship between band gap and bond length alternation in organic conjugated polymers,” J. Chem. Phys., 82(8), 3808–3811, 1985.
  • [18] J. P. Ferraris and T. L. Lambert, “Poly-4-dicyanomethylene-4H-cyclopenta[2,1-b ;3,4=b’]dithiophene (PCDM),” J. Chem. Soc., Chem. Commun., 1268–1270, 1991.
  • [19] T. L. Lambert and J. P. Ferraris, “Narrow Band Gap Polymers : polycyclopenta [ 2 , 1-b ; 3 , 4-b ’] dithiophen-4-one,” J. Chem. Soc., Chem. Commun., 752–754, 1991.
  • [20] J. L. Brédas, A. J. Heeger, and F. Wudl, “Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives,” J. Chem. Phys., 85(8), 4673–4678, 1986.
  • [21] Y. C. Chang and I. Chao, “An important key to design molecules with small internal reorganization energy: Strong nonbonding character in frontier orbitals,” J. Phys. Chem. Lett., 1(1), 116–121, 2010.
  • [22] Y. Kashiwagi, K. Ohkubo, J. A. McDonald, I. M. Blake, M. J. Crossley, Y. Araki, O. Ito, H. Imahori and S. Fukuzumi, “Long-lived charge-separated state produced by photoinduced electron transfer in a zinc imidazoporphyrin-C60 dyad,” Org. Lett., 5(15), 2719–2721, 2003.
  • [23] W. Diirckheimer, “Tetracyclines chemistry biochemistry and structure-activity relations,”Angew. Chem. Int. Ed., 14(11), 721–774, 1975.
  • [24] Y. A. Berlin, G. R. Hutchison, P. Rempala, M. A. Ratner and J. Michl, “Charge hopping in molecular wires as a sequence of electron-transfer reactions,” J. Phys. Chem. A, 107(19), 3970–3980, 2003.
  • [25] E. V. Tsiper, Z. G. Soos, W. Gao, and A. Kahn, “Eletronic polarization at surfaces and thin films of organic molecular crystals: PTCDA,” Chemical Physics Letters, 360(12), 47–52, 2002.
  • [26] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Physical Review B, 37(2), 785–789, 1988.
  • [27] B. Miechlic, A. Savin, H. Stoll, H. Preuss, “Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr,” Chemical Physics Letter, 157(3), 200–206, 1989.
  • [28] J. Antony and S. Grimme, “Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules,” Phys. Chem. Chem. Phys., 8(45), 5287–5293, 2006.
  • [29] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris, “A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements,” J. Chem. Phys., 89(4), 2193–2218, 1988.
  • [30] R. A. Marcus and N. Sutin, “Electron transfers in chemistry and biology,” BBA-Bioenergetics, 811(3), 265–322, 1985.
  • [31] J. P. Calbert, D. A. S. Filho, J. Cornil, and J. L. Bre, “Organic semiconductors : A theoretical characterization of the basic parameters governing charge transport,” PNAS, 99(9), 5804–5809 2002.
  • [32] B. C. Lin, C. P. Cheng, Z. Q. You and C. P. Hsu, “Charge Transport Proper ties of Tris ( 8-hydroxyquinolinato ) aluminum ( III ): Why It Is an Electron Transporter,” J. Am. Chem. Soc., 127(1), 66–67, 2005.
  • [33] Y. Mao, M. Head-Gordon, and Y. Shao, “Unraveling substituent effects on frontier orbitals of conjugated molecules using an absolutely localized molecular orbital based analysis,” Chem. Sci., 9(45), 8598–8607, 2018.
  • [34] H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys., 48(11) , 4729–4733, 1977.
  • [35] W. C. Chen and I. Chao, “Molecular orbital-based design of π-conjugated organic materials with small internal reorganization energy: Generation of nonbonding character in frontier orbitals,” J. Phys. Chem. C, 118(35), 20176–20183, 2014.
  • [36] S. Kera et al., “Experimental Reorganization Energies of Pentacene and Per fluoropentacene: Eff ects of Perfluorination,” J. Phys. Chem. C, 117(43), 22428–22437, 2013.
  • [37] R. Mondal, C. Tönshoff, D. Khon, D. C. Neckers, and H. F. Bettinger, “Synthesis, stability, and photochemistry of pentacene, hexacene, and heptacene: A matrix isolation study,” J. Am. Chem. Soc., 131(40), 14281–14289, 2009.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Metrology, Applied and Industrial Physics
Journal Section Makaleler
Authors

Gül Yakalı 0000-0002-0015-5948

Publication Date November 29, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

IEEE G. Yakalı, “Halojen Atomları ve Siyano Grubunun Hekzasen Molekülünün Optik, Elektronik ve Yük Transfer Özellikleri Üzerine Etkisinin İncelenmesi: Moleküler Dizayn Yöntemi, Yapı-Özellik İlişkisi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 15, no. 2, pp. 330–342, 2020, doi: 10.29233/sdufeffd.811263.