Araştırma Makalesi
BibTex RIS Kaynak Göster

Çevresel ve Kimyasal Yaklaşımın rGO Yapısına Etkisi

Yıl 2021, Cilt: 16 Sayı: 1, 216 - 224, 27.05.2021
https://doi.org/10.29233/sdufeffd.891066

Öz

İndirgenmiş grafen oksit (rGO) ve grafen oksit (GO) birçok araştırma alanında popülerlik kazanmaktadır. rGO sentezi, grafitin oksidasyonu ve GO'nun indirgenmesi olmak üzere iki faklı aşamadan oluşan aşağıdan yukarı üretim esasına dayanır. rGO yapısının özelliklerini, hammadde olarak kullanılan GO, indirgeme ajanları ve proses türü belirlemektedir. GO'yu rGO'ya indirgemek için farklı kimyasal ajanlar kullanılır ve bunlar arasında hidrazinin en güçlü ve etkili ancak en toksik ajan olduğu bilinmektedir. Bu çalışmada rGO sentezi yeşil ve kimyasal olmak üzere iki farklı yaklaşım ile indirgeyici ajan olarak L-askorbik asit (C Vitamini) ve sodyum ditiyonit (Na2S2O4) kullanılarak gerçekleştirilmiştir. GO, toksik sodyum nitrat kullanılmadan Modifiye İyileştirilmiş Hummers Yöntemi ile sentezlenmiştir. İndirgenen ürünler, FTIR, XRD ve SEM / EDS ile incelenmiştir. Sonuçlar, farklı indirgeyici ajanların, 0.34 nm tabakalar arası mesafeye sahip benzer rGO-Na2S2O4 ve rGO-LAA yapılarının sentezlediğini ayrıca bu yapıların sırasıyla % 14.27 ve % 12.24 oksijen içerdiğini göstermiştir.

Kaynakça

  • [1] W. Xiluan, G. Shi, “Introduction to the chemistry of graphene,” Phys. Chem. Chem. Phys., 17, 28484–28504, 2015.
  • [2] R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav, S.A. Moshkalev, “Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev., 342, 34–79, 2017.
  • [3] G.V. Dubacheva, C.K Liang, D.M. Bassani, “Functional monolayers from carbon nanostructures – fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy conversion,” Coord. Chem. Rev., 256 (21-22), 2628–2639, 2012.
  • [4] D.P. Singh, C.E. Herrera, B. Singh, S. Singh, R.K. Singh, R. Kumar, “Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications,” Mater. Sci. and Eng.: C, 86, 173-197, 2018.
  • [5] S.C. Ray, Applications of Graphene and Graphene-Oxide Based Nanomaterials. South Africa: Elsevier, 2015, ch. 2.
  • [6] A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,” Nano Mater. Sci., 1 (1), 31–47, 2019.
  • [7] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, “Graphene and graphene oxide: Synthesis, properties, and applications,” Advanced Mat., 22 (35), 3906–3924, 2010.
  • [8] L. Chen, N. Li, M. Zhang, P. Li, Z. Lin, “Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets,” Journal of Solid State Chem., 249, 9-14, 2017.
  • [9] M.S. Samuel, J. Bhattacharya, S. Raj, N. Santhanam, H. Singh, N.D.P. Singh, “Efficient removal of chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite,” International Journal of Biological Macromolecules, 121, 285-292, 2019.
  • [10] G. Eda, M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Advanced Materials, 22 (22), 2392-415, 2010.
  • [11] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, “High-throughput solution processing of large-scale graphene,” Nature Nanotechnology, 4, 25–29, 2009.
  • [12] B. Doğan, “Grafen oksit esaslı multifonksiyonel polyester tekstil ürünlerinin geliştirilmesi,” Yüksek Lisans Tezi, Tekstil Mühendisliği, Süleyman Demirel Üniv., Isparta, Türkiye, 2020.
  • [13] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, “Reduction of Graphene Oxide Via L-Ascorbic Acid,” Chemical Communic., 46 (7), 1112–1114, 2010.
  • [14] W. Wan, Z. Zhao, H. Hu, Y. Gogotsi, J. Qiu, “Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength,” Materials Research Bulletin, 48 (11) , 4797–4803, 2013.
  • [15] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, “Green preparation of reduced graphene oxide for sensing and energy storage applications,” Scientific Reports, 4 (4684), 1-8, 2014.
  • [16] Y. Wang, Z.X. Shi, J. Yin, “Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites,” ACS Appl. Mater. and Interfaces, 3 (4), 1127-1133, 2011.
  • [17] S. Thakur, N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon, 50 (14), 5331–5339, 2012.
  • [18] D. Chen, L. Li, L. Guo, “Environment-friendly preparation of reduced graphene oxide nanosheets via amino acid,” Nanotechnology, 22 (32), 1-7, 2011.
  • [19] G. Wang, F. Qian, C.W. Saltikov, Y. Jiao, Y. Li, “Microbial reduction of graphene oxide by shewanella,” Nano Research, 4, 563–570, 2011.
  • [20] C. Zhu, S. Guo, Y. Fang, S. Dong, “Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets,” ACS Nano, 4 (4), 2429–2437, 2010.
  • [21] K.K.H. De Silva, H.H. Huang, M. Yoshimura, “Progress of reduction of graphene oxide by ascorbic acid,” Appl. Surface Sci., 447, 338–346, 2018.
  • [22] M.J. Fernandez-Merino, L. Guardia, J.I. Parades, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions,” The Journal of Physic. Chem. C, 114 (14), 6426-6432, 2010.
  • [23] W. Chen, L. Yan, P.R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” The Journal of Physical Chemistry C, 114 (47), 19885–19890, 2010.
  • [24] B. Esencan Türkaslan, M. Filiz Aydın, “Optimizing parameters of graphene derivatives synthesis by modified improved hummers,” Mathematical Methods in the Applied Sciences, 1–8, 2020.
  • [25] C. Li, D. Li, J. Yang, X. Zeng, W. Yuan, “Preparation of single- and few-layer graphene sheets using co deposition on SiC substrate,” Journal of Nanomater., 319624, 1-7, 2011.
  • [26] L. Shahriary, A.A. Athawale, “Graphene oxide synthesized by using modified hummers approach,” Intenational Journal Of Renewable Energy And Environmental Engineering, 2 (1), 58-63, 2014.
  • [27] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.J. Kim, “Investigation of raman and photoluminescence studies of reduced graphene oxide sheets,” Applied Physics A, 106 (3), 501–506, 2012.
  • [28] M. Yazıcı, İ. Tiyek, M.S. Ersoy, M.H. Alma, U. Dönmez, B. Yıldırım, T. Salan, Ş. Karataş, S. Uruş, İ. Karteri, K. Yıldız, “Modifiye hummers yöntemiyle grafen oksit (GO) sentezi ve karakterizasyonu,” Gazi Univ. Journal of Science Part: C, 4 (2), 41-48, 2016.
  • [29] P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.S. Yu, J.H. Lee, “Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast,” Chem. Engineer. Journal, 183, 526–533, 2012.

The Effect of Environmental and Chemical Approach on rGO Structure

Yıl 2021, Cilt: 16 Sayı: 1, 216 - 224, 27.05.2021
https://doi.org/10.29233/sdufeffd.891066

Öz

Reduced graphene oxide (rGO) and graphene oxide (GO) are gaining popularity among many research areas. rGO synthesis is based on bottom-up production, which consists of two different stages: the oxidation of graphite and the reduction of GO. The properties of rGO structure are determined by GO used as raw material, reducing agents and the type of process. Different chemical agents are used to reduce GO to rGO and among these, hydrazine is known to be the strongest and effective, but the most toxic agent.
In this study, the rGO structure synthesized using sulfur-containing sodium dithionite (Na2S2O4) was compared with the rGO structure synthesized by L-ascorbic acid (Vitamin C) agent in terms of layer number, elemental analysis and crystal structures, and It has been observed that Na2S2O4 may be a good is a good alternative. to reduce GO. GO was synthesized by Modified Improved Hummers method without using toxic sodium nitrate. The reduced products were examined by FTIR, XRD and SEM/EDS. Results showed that different reducing agents synthesized similar rGO-Na2S2O4 and rGO-LAA structures with 0.34 nm interlayer space also they included % 14.27 and %12.24 of oxygen respectively.

Kaynakça

  • [1] W. Xiluan, G. Shi, “Introduction to the chemistry of graphene,” Phys. Chem. Chem. Phys., 17, 28484–28504, 2015.
  • [2] R. Kumar, R.K. Singh, D.P. Singh, E. Joanni, R.M. Yadav, S.A. Moshkalev, “Laser-assisted synthesis, reduction and micro-patterning of graphene: Recent progress and applications,” Coord. Chem. Rev., 342, 34–79, 2017.
  • [3] G.V. Dubacheva, C.K Liang, D.M. Bassani, “Functional monolayers from carbon nanostructures – fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy conversion,” Coord. Chem. Rev., 256 (21-22), 2628–2639, 2012.
  • [4] D.P. Singh, C.E. Herrera, B. Singh, S. Singh, R.K. Singh, R. Kumar, “Graphene oxide: An efficient material and recent approach for biotechnological and biomedical applications,” Mater. Sci. and Eng.: C, 86, 173-197, 2018.
  • [5] S.C. Ray, Applications of Graphene and Graphene-Oxide Based Nanomaterials. South Africa: Elsevier, 2015, ch. 2.
  • [6] A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, “Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites,” Nano Mater. Sci., 1 (1), 31–47, 2019.
  • [7] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, “Graphene and graphene oxide: Synthesis, properties, and applications,” Advanced Mat., 22 (35), 3906–3924, 2010.
  • [8] L. Chen, N. Li, M. Zhang, P. Li, Z. Lin, “Effect of preparation methods on dispersion stability and electrochemical performance of graphene sheets,” Journal of Solid State Chem., 249, 9-14, 2017.
  • [9] M.S. Samuel, J. Bhattacharya, S. Raj, N. Santhanam, H. Singh, N.D.P. Singh, “Efficient removal of chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite,” International Journal of Biological Macromolecules, 121, 285-292, 2019.
  • [10] G. Eda, M. Chhowalla, “Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics,” Advanced Materials, 22 (22), 2392-415, 2010.
  • [11] V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, “High-throughput solution processing of large-scale graphene,” Nature Nanotechnology, 4, 25–29, 2009.
  • [12] B. Doğan, “Grafen oksit esaslı multifonksiyonel polyester tekstil ürünlerinin geliştirilmesi,” Yüksek Lisans Tezi, Tekstil Mühendisliği, Süleyman Demirel Üniv., Isparta, Türkiye, 2020.
  • [13] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, “Reduction of Graphene Oxide Via L-Ascorbic Acid,” Chemical Communic., 46 (7), 1112–1114, 2010.
  • [14] W. Wan, Z. Zhao, H. Hu, Y. Gogotsi, J. Qiu, “Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength,” Materials Research Bulletin, 48 (11) , 4797–4803, 2013.
  • [15] Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan, K. Cen, “Green preparation of reduced graphene oxide for sensing and energy storage applications,” Scientific Reports, 4 (4684), 1-8, 2014.
  • [16] Y. Wang, Z.X. Shi, J. Yin, “Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites,” ACS Appl. Mater. and Interfaces, 3 (4), 1127-1133, 2011.
  • [17] S. Thakur, N. Karak, “Green reduction of graphene oxide by aqueous phytoextracts,” Carbon, 50 (14), 5331–5339, 2012.
  • [18] D. Chen, L. Li, L. Guo, “Environment-friendly preparation of reduced graphene oxide nanosheets via amino acid,” Nanotechnology, 22 (32), 1-7, 2011.
  • [19] G. Wang, F. Qian, C.W. Saltikov, Y. Jiao, Y. Li, “Microbial reduction of graphene oxide by shewanella,” Nano Research, 4, 563–570, 2011.
  • [20] C. Zhu, S. Guo, Y. Fang, S. Dong, “Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets,” ACS Nano, 4 (4), 2429–2437, 2010.
  • [21] K.K.H. De Silva, H.H. Huang, M. Yoshimura, “Progress of reduction of graphene oxide by ascorbic acid,” Appl. Surface Sci., 447, 338–346, 2018.
  • [22] M.J. Fernandez-Merino, L. Guardia, J.I. Parades, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J.M.D. Tascon, “Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions,” The Journal of Physic. Chem. C, 114 (14), 6426-6432, 2010.
  • [23] W. Chen, L. Yan, P.R. Bangal, “Chemical reduction of graphene oxide to graphene by sulfur-containing compounds,” The Journal of Physical Chemistry C, 114 (47), 19885–19890, 2010.
  • [24] B. Esencan Türkaslan, M. Filiz Aydın, “Optimizing parameters of graphene derivatives synthesis by modified improved hummers,” Mathematical Methods in the Applied Sciences, 1–8, 2020.
  • [25] C. Li, D. Li, J. Yang, X. Zeng, W. Yuan, “Preparation of single- and few-layer graphene sheets using co deposition on SiC substrate,” Journal of Nanomater., 319624, 1-7, 2011.
  • [26] L. Shahriary, A.A. Athawale, “Graphene oxide synthesized by using modified hummers approach,” Intenational Journal Of Renewable Energy And Environmental Engineering, 2 (1), 58-63, 2014.
  • [27] K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.J. Kim, “Investigation of raman and photoluminescence studies of reduced graphene oxide sheets,” Applied Physics A, 106 (3), 501–506, 2012.
  • [28] M. Yazıcı, İ. Tiyek, M.S. Ersoy, M.H. Alma, U. Dönmez, B. Yıldırım, T. Salan, Ş. Karataş, S. Uruş, İ. Karteri, K. Yıldız, “Modifiye hummers yöntemiyle grafen oksit (GO) sentezi ve karakterizasyonu,” Gazi Univ. Journal of Science Part: C, 4 (2), 41-48, 2016.
  • [29] P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.S. Yu, J.H. Lee, “Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast,” Chem. Engineer. Journal, 183, 526–533, 2012.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kimya Mühendisliği
Bölüm Makaleler
Yazarlar

Banu Esencan Türkaslan 0000-0003-3948-6207

Yayımlanma Tarihi 27 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 16 Sayı: 1

Kaynak Göster

IEEE B. Esencan Türkaslan, “The Effect of Environmental and Chemical Approach on rGO Structure”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 16, sy. 1, ss. 216–224, 2021, doi: 10.29233/sdufeffd.891066.