Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of CuO Thin Films Produced by Ultrasonic Spray Pyrolysis Method Depending on Substrate Temperature

Yıl 2022, Cilt: 17 Sayı: 1, 195 - 208, 27.05.2022
https://doi.org/10.29233/sdufeffd.1059663

Öz

In this study, the CuO thin films were deposited on glass substrates at different substrate temperatures (350, 400, 450, and 500 ºC) by the ultrasonic spray pyrolysis (USP) method and then annealed at 525 ºC. In X-ray diffraction (XRD) analysis, the peak intensity was not found in thin films at 350 ºC substrate temperature and as-grown conditions. Two distinct peaks were observed at ~36º and ~39º in the XRD patterns of other films. These peaks are characteristic peaks of the monoclinic crystal structure of CuO. Atomic force microscopy (AFM) and scanning electron microscope (SEM) images of the produced thin films were examined. The surfaces of thin films are not smooth. After annealing, grain agglomerations were formed. The optical properties of the CuO thin films were analyzed by ultraviolet-visible region (UV-Vis) measurements. Forbidden band gap values (Eg) were calculated from Tauc graphs for as-grown and annealed samples. It has been observed that the structural, morphological, and optical properties of CuO thin films produced by the USP method can be controlled by the substrate temperature.

Kaynakça

  • A. Tiwari and S. Valyukh, Advanced Energy Materials, John Wiley & Sons, 2014, pp. 114-153.
  • K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. T. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir, 26 (6), 4368-4376, 2010.
  • D. Sivalingam, J. B. Gopalakrishnan, and J. B. B. Rayappan, “Nanostructured mixed ZnO and CdO thin film for selective ethanol sensing,” Mater. Lett., (77), 117-120, 2012.
  • C. –H. Tsai, P. –H. Fei, C. –M. Lin, and S. –L. Shiu, “CuO and CuO/Graphene nanostructured thin films as counter electrodes for Pt-free dye-sensitized solar cells,” Coatings, 8 (21), 13, 2018.
  • Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, “CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications,” Prog. Mater. Sci., 60, 208-337, 2014.
  • J. F. Pierson, A. Thobor-Keck, and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering,” Appl. Surf. Sci., 210, 359-367, 2003.
  • R. Daira, A. Kabir, B. Boudjema, and C. Sedrati, “Structural and optical transmittance analysis of Cuo thin films deposited by the spray pyrolysis method,” Solid State Sci., 104, 106254, 2020.
  • A. Bhaumik, A. Haque, P. Karnati, M. F. N. Taufique, R. Patel, and K. Ghosh, “Copper oxide based nanostructures for improved solar cell efficiency,” Thin Solid Films, 572, 126-133, 2014.
  • S. Dabbabi, A. Garcia-Loureiro, M. Ajili, T. B. Nasr, and N. Kamoun, “Experimental and simulation studies on FTO/ZnO:Co/CuO heterojunction structure for solar cell application,” Mater. Res. Express, 6, 1050b6, 2019.
  • P. Sawicka-Chudy, M. Sibiński, G. Wisz, E. Rybak-Wilusz, and M. Cholewa, “Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS,” Journal of Physics: Conference Series, Joint Event of International Conferences MicroTherm and SENM, 1033, 012002, 2018.
  • A. Kathalingam, K. Kesavan, V. M. Pradeepa, and H. –S. Kim, “Fabrication and characterization of CuO/CdS heterostructure for optoelectronic applications,” J. Sol-Gel Sci. Technol., 96, 178-187, 2020.
  • L. Martin, H. Martinez, D. Poinot, B. Pecquenard, and F. Le Cras, “Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries,” J. Power Sources, 248, 861-873, 2014.
  • L. V. A. Sayson, J. M. Lopez, E. S. Estacio, A. A. Salvador, and A. S. Somintac, “Nanostructured CuO thin film deposited on stainless steel using spray pyrolysis as supercapacitor electrode,” Mater. Res. Express, 6, 125551, 2019.
  • J. M. Rzaij and N. F. Habubi, “Room temperature gas sensor based on La2O3 doped CuO thin films,” Appl. Phys. A, 126, 560, 2020.
  • P. Poizot, C. –J. Hung, M. P. Nikiforov, E. W. Bohannan, and J. A. Switzer, “An electrochemical method for CuO thin film deposition from aqueous solution,” Electrochem. Solid-State Lett. 6 (2), C21-C25, 2003.
  • N. Serin, T. Serin, Ş. Horzum, and Y. Çelik, “Annealing effects on the properties of copper oxide thin films prepared by chemical deposition,” Semicond. Sci. Technol., 20, 398-401, 2005.
  • R. Motoyoshi, T. Oku, H. Kidowaki, A. Suzuki, K. Kikuchi, S. Kikuchi, and B. Jeyadevan, “Structure and photovoltaic activity of cupric oxide-based thin film solar cells,” J. Ceram. Soc. Jpn., 118 (11), 1021-1023, 2010.
  • Z. Li, K. Tong, R. Shi, Y. Shen, Y. Zhang, Z. Yao, J. Fan, M. Thwaites, and G. Shao, “Reactive plasma deposition of high quality single phase CuO thin films suitable for metal oxide solar cells,” J. Alloys Compd., 695, 3116-3123, 2017.
  • A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, “Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition,” Vacuum, 83, 927-930, 2009.
  • H. Z. Asl and S. M. Rozati, “Effects of HCl and methanol in the precursor on physical properties of spray-deposited nanostructured CuO thin films for solar applications,” J. Electron. Mater., 46 (8), 5020-5027, 2017.
  • M. L. Zeggar, M. S. Aida, and N. Attaf, “Copper oxide thin films deposition by spray pyrolysis,” J. Mater. Sci. Technol., 4 (01), 86-88, 2014.
  • H. Serrara, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, and H. Merabti, “Effect of water and methanol solvents on the properties of CuO thin films deposited by spray pyrolysis,” Thin Solid Films, 686, 137282, 2019.
  • V. Jagadeesan and V. Subramaniam, “Impact of molarity on structural, optical, morphological and electrical properties of copper oxide thin films prepared by cost effective jet nebulizer spray pyrolysis technique,” J. Mater. Sci. Mater. Electron., 30, 1571-1578.
  • S. Akyürekli, M. Kaleli, M. Koç, and D. A. Aldemir, “Ultrasonik sprey piroliz yöntemi ile üretilen güneş soğurucu CH3NH3PbI3-xClx perovskit yapısının optik, morfolojik ve yapısal özelliklerinin incelenmesi,” SDÜFEFFD, 15 (2), 253-263, 2020.
  • D. Bayuwati, “Comparison of SnO2/Si-n thin films deposited by pneumatic spray pyrolysis technique with that deposited by ultrasonic spray pyrolysis technique,” JUSAMI, 241-245, 2008.
  • S. K. Shinde, S. M. Mohite, A. A. Kadam, H. M. Yadav, G. S. Ghodake, K. Y. Rajpure, D. S. Lee, and D. -Y. Kim, “Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance,” J. Electroanal. Chem., 850, 113433, 2019.
  • H. Z. Asl and S. M. Rozati, “Spray deposited nanostructured CuO thin films: influence of substrate temperature and annealing process,” Mater. Res., 21 (2), e20170754, 2018.
  • K. H. Abass, Q. M. Hadi, S. L. Hamdan, and M. M. Alagha, “Effect of annealing temperature on some optical properties of CuO thin film,” Physical Chemistry: An Indian Journal, 10 (2), 041-045, 2015.
  • V. Saravanan, P. Shankar, G. K. Mani, and J. B. B. Rayappan, “Growth and characterization of spray pyrolysis deposited copper oxide thin films: influence of substrate and annealing temperatures,” J. Anal. Appl. Pyrolysis, 111, 272-277, 2015.
  • Z. Lin, D. Han and S. Li, “Study on thermal decomposition of copper (II) acetate monohydrate in air,” J. Therm. Anal. Calorim., 107, 471-475, 2012.
  • V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci., 254, 3949-3954, 2008.
  • B. D. Cullity, “Elements of X-Ray Diffraction” Addison-Wesley, 1956.
  • D. K. Aswal, K. P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S. K. Gupta, and J. V. Yakhmi, “XPS and AFM investigations of annealing induced surface modifications of MgO single crystals,” J. Cryst. Growth, 236, 661-666, 2002.
  • L. Scholtz, L. Ladanyi, and J. Mullerova, “Influence of surface roughness on optical characteristics of multilayer solar cell,” Adv. Electr. Electron. Eng., 12 (12), 631-638, 2014.
  • D. A. Aldemir, “Structural, morphological and optical properties of Yb2Cu2O5 thin films,” J. Mater. Sci. Mater. Electron., 30, 19457-19462, 2019.
  • Y. Du, X. Gao, X. Zhang, and X. Meng, “Characterization of the microstructure and the optical and electrical properties of the direct-current magnetron sputtered CuO films at different substrate temperatures,” Phys. B: Condens. Matter, 546, 28-32, 2018.
  • D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, “Effect of pyrolytic temperature on the properties of nano-structured CuO optimized for ethanol sensing applications,” J. Mater. Sci. Mater. Electron., 24, 1004-1011, 2003.
  • S. Köse, F. Atay, V. Bilgin, and I. Akyüz, “Some physical properties of copper oxide films: the effect of substrate temperature,” Mater. Chem. Phys., 111, 351-358, 2008.
  • R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am., 34 (1), 6-8, 1962.
  • R. H. Bari, S. B. Patil, and A. R. Bari, “Spray-pyrolized nanostructured CuO thin films for H2S gas sensor,” Int. Nano Lett., 3, 1-5, 2013.
  • H. Ali, F. Bensaali and F. Jaber, “Novel approach to non-invasive blood glucose monitoring based on transmittance and refraction of visible laser light,” IEEE Access, 5, 9163-9174, 2017.
  • J. Tauc, R. Grigorovici and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol., 15, 627-637, 1966.
  • A. N. Hussein, S. K. Muhammad, S. A. Mohsin, and F. N. Ajeel, “Study on structure and optical properties of CuO thin films prepared by chemical spray pyrolysis,” Journal of Applied Physical Science International, 4(3), 178-184, 2015.
  • A. Moumen, B. Hartiti, E. Comini, Z. El Khalidi, H. M. M. M. Arachchige, S. Fadili, and P. Thevenin, “Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique,” Superlattices Microstruct., 127, 2-10, 2019.
  • Y. Akaltun, “Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction,” Thin Solid Films, 594, 30-34, 2015.
  • F. Bayansal, S. Kahraman, G. Çankaya, H. A. Çetinkara, H. S. Güder, and H. M. Çakmak, “Growth of homogenous CuO nano-structured thin films by a simple solution method,” J. Alloys Compd., 509(5), 2094-2098, 2011.
  • M. M. Abd El-Raheem, A. M. A. Amry, M. Al-Mokhtar, M. Al-Jalali, S. A. Amin, H. E. A. El-Sayed, and H. H. Al-Ofi, “Transport properties of aluminum-doped zinc oxide thin films,” Advances in Materials and Corrosion, 1, 30-35, 2012.

Alttaş Sıcaklığına Bağlı Olarak Ultrasonik Sprey Piroliz Yöntemi ile Üretilen CuO İnce Filmlerin İncelenmesi

Yıl 2022, Cilt: 17 Sayı: 1, 195 - 208, 27.05.2022
https://doi.org/10.29233/sdufeffd.1059663

Öz

Bu çalışmada, CuO ince filmler, ultrasonik sprey piroliz (USP) yöntemi ile farklı alttaş sıcaklıklarında (350, 400, 450 ve 500 ºC) cam altlıklar üzerine biriktirilmiştir ve ardından 525 ºC’de tavlanmıştır. X-ışını kırınımı (XRD) analizlerinde, 350 ºC alttaş sıcaklığında ve tavlanmayan durumda ince filmlerde pik şiddetine rastlanmamıştır. Diğer filmlerin XRD desenlerinde ~36º ve ~39º’de iki belirgin pik gözlemlenmiştir. Bu pikler CuO’in monoklinik kristal yapısına ait karakteristik piklerdir. Atomik kuvvet mikroskobu (AFM) ve taramalı elektron mikroskobu (SEM) görüntülerinden, CuO ince filmlerin yüzeylerinin pürüzsüz olmadığı ve tavlama ile tane yığınlarının meydana geldiği gözlenmiştir. CuO ince filmlerin optik özellikleri ultraviyole- görünür bölge (UV-Vis) ölçümleri ile analiz edilmiştir. Tauc grafiklerinden yasak band aralığı değerleri (Eg), tavlanmamış ve tavlanan numuneler için hesaplanmıştır. USP yöntemiyle üretilen CuO ince filmlerin yapısal, morfolojik ve optik özelliklerinin alttaş sıcaklığı ile kontrol edilebileceği görülmüştür.

Kaynakça

  • A. Tiwari and S. Valyukh, Advanced Energy Materials, John Wiley & Sons, 2014, pp. 114-153.
  • K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. T. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir, 26 (6), 4368-4376, 2010.
  • D. Sivalingam, J. B. Gopalakrishnan, and J. B. B. Rayappan, “Nanostructured mixed ZnO and CdO thin film for selective ethanol sensing,” Mater. Lett., (77), 117-120, 2012.
  • C. –H. Tsai, P. –H. Fei, C. –M. Lin, and S. –L. Shiu, “CuO and CuO/Graphene nanostructured thin films as counter electrodes for Pt-free dye-sensitized solar cells,” Coatings, 8 (21), 13, 2018.
  • Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, “CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications,” Prog. Mater. Sci., 60, 208-337, 2014.
  • J. F. Pierson, A. Thobor-Keck, and A. Billard, “Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering,” Appl. Surf. Sci., 210, 359-367, 2003.
  • R. Daira, A. Kabir, B. Boudjema, and C. Sedrati, “Structural and optical transmittance analysis of Cuo thin films deposited by the spray pyrolysis method,” Solid State Sci., 104, 106254, 2020.
  • A. Bhaumik, A. Haque, P. Karnati, M. F. N. Taufique, R. Patel, and K. Ghosh, “Copper oxide based nanostructures for improved solar cell efficiency,” Thin Solid Films, 572, 126-133, 2014.
  • S. Dabbabi, A. Garcia-Loureiro, M. Ajili, T. B. Nasr, and N. Kamoun, “Experimental and simulation studies on FTO/ZnO:Co/CuO heterojunction structure for solar cell application,” Mater. Res. Express, 6, 1050b6, 2019.
  • P. Sawicka-Chudy, M. Sibiński, G. Wisz, E. Rybak-Wilusz, and M. Cholewa, “Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS,” Journal of Physics: Conference Series, Joint Event of International Conferences MicroTherm and SENM, 1033, 012002, 2018.
  • A. Kathalingam, K. Kesavan, V. M. Pradeepa, and H. –S. Kim, “Fabrication and characterization of CuO/CdS heterostructure for optoelectronic applications,” J. Sol-Gel Sci. Technol., 96, 178-187, 2020.
  • L. Martin, H. Martinez, D. Poinot, B. Pecquenard, and F. Le Cras, “Direct observation of important morphology and composition changes at the surface of the CuO conversion material in lithium batteries,” J. Power Sources, 248, 861-873, 2014.
  • L. V. A. Sayson, J. M. Lopez, E. S. Estacio, A. A. Salvador, and A. S. Somintac, “Nanostructured CuO thin film deposited on stainless steel using spray pyrolysis as supercapacitor electrode,” Mater. Res. Express, 6, 125551, 2019.
  • J. M. Rzaij and N. F. Habubi, “Room temperature gas sensor based on La2O3 doped CuO thin films,” Appl. Phys. A, 126, 560, 2020.
  • P. Poizot, C. –J. Hung, M. P. Nikiforov, E. W. Bohannan, and J. A. Switzer, “An electrochemical method for CuO thin film deposition from aqueous solution,” Electrochem. Solid-State Lett. 6 (2), C21-C25, 2003.
  • N. Serin, T. Serin, Ş. Horzum, and Y. Çelik, “Annealing effects on the properties of copper oxide thin films prepared by chemical deposition,” Semicond. Sci. Technol., 20, 398-401, 2005.
  • R. Motoyoshi, T. Oku, H. Kidowaki, A. Suzuki, K. Kikuchi, S. Kikuchi, and B. Jeyadevan, “Structure and photovoltaic activity of cupric oxide-based thin film solar cells,” J. Ceram. Soc. Jpn., 118 (11), 1021-1023, 2010.
  • Z. Li, K. Tong, R. Shi, Y. Shen, Y. Zhang, Z. Yao, J. Fan, M. Thwaites, and G. Shao, “Reactive plasma deposition of high quality single phase CuO thin films suitable for metal oxide solar cells,” J. Alloys Compd., 695, 3116-3123, 2017.
  • A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, “Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition,” Vacuum, 83, 927-930, 2009.
  • H. Z. Asl and S. M. Rozati, “Effects of HCl and methanol in the precursor on physical properties of spray-deposited nanostructured CuO thin films for solar applications,” J. Electron. Mater., 46 (8), 5020-5027, 2017.
  • M. L. Zeggar, M. S. Aida, and N. Attaf, “Copper oxide thin films deposition by spray pyrolysis,” J. Mater. Sci. Technol., 4 (01), 86-88, 2014.
  • H. Serrara, A. Bouabellou, Y. Bouachiba, A. Taabouche, A. Bouhank, Y. Bellal, and H. Merabti, “Effect of water and methanol solvents on the properties of CuO thin films deposited by spray pyrolysis,” Thin Solid Films, 686, 137282, 2019.
  • V. Jagadeesan and V. Subramaniam, “Impact of molarity on structural, optical, morphological and electrical properties of copper oxide thin films prepared by cost effective jet nebulizer spray pyrolysis technique,” J. Mater. Sci. Mater. Electron., 30, 1571-1578.
  • S. Akyürekli, M. Kaleli, M. Koç, and D. A. Aldemir, “Ultrasonik sprey piroliz yöntemi ile üretilen güneş soğurucu CH3NH3PbI3-xClx perovskit yapısının optik, morfolojik ve yapısal özelliklerinin incelenmesi,” SDÜFEFFD, 15 (2), 253-263, 2020.
  • D. Bayuwati, “Comparison of SnO2/Si-n thin films deposited by pneumatic spray pyrolysis technique with that deposited by ultrasonic spray pyrolysis technique,” JUSAMI, 241-245, 2008.
  • S. K. Shinde, S. M. Mohite, A. A. Kadam, H. M. Yadav, G. S. Ghodake, K. Y. Rajpure, D. S. Lee, and D. -Y. Kim, “Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance,” J. Electroanal. Chem., 850, 113433, 2019.
  • H. Z. Asl and S. M. Rozati, “Spray deposited nanostructured CuO thin films: influence of substrate temperature and annealing process,” Mater. Res., 21 (2), e20170754, 2018.
  • K. H. Abass, Q. M. Hadi, S. L. Hamdan, and M. M. Alagha, “Effect of annealing temperature on some optical properties of CuO thin film,” Physical Chemistry: An Indian Journal, 10 (2), 041-045, 2015.
  • V. Saravanan, P. Shankar, G. K. Mani, and J. B. B. Rayappan, “Growth and characterization of spray pyrolysis deposited copper oxide thin films: influence of substrate and annealing temperatures,” J. Anal. Appl. Pyrolysis, 111, 272-277, 2015.
  • Z. Lin, D. Han and S. Li, “Study on thermal decomposition of copper (II) acetate monohydrate in air,” J. Therm. Anal. Calorim., 107, 471-475, 2012.
  • V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, “Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper,” Appl. Surf. Sci., 254, 3949-3954, 2008.
  • B. D. Cullity, “Elements of X-Ray Diffraction” Addison-Wesley, 1956.
  • D. K. Aswal, K. P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S. K. Gupta, and J. V. Yakhmi, “XPS and AFM investigations of annealing induced surface modifications of MgO single crystals,” J. Cryst. Growth, 236, 661-666, 2002.
  • L. Scholtz, L. Ladanyi, and J. Mullerova, “Influence of surface roughness on optical characteristics of multilayer solar cell,” Adv. Electr. Electron. Eng., 12 (12), 631-638, 2014.
  • D. A. Aldemir, “Structural, morphological and optical properties of Yb2Cu2O5 thin films,” J. Mater. Sci. Mater. Electron., 30, 19457-19462, 2019.
  • Y. Du, X. Gao, X. Zhang, and X. Meng, “Characterization of the microstructure and the optical and electrical properties of the direct-current magnetron sputtered CuO films at different substrate temperatures,” Phys. B: Condens. Matter, 546, 28-32, 2018.
  • D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, “Effect of pyrolytic temperature on the properties of nano-structured CuO optimized for ethanol sensing applications,” J. Mater. Sci. Mater. Electron., 24, 1004-1011, 2003.
  • S. Köse, F. Atay, V. Bilgin, and I. Akyüz, “Some physical properties of copper oxide films: the effect of substrate temperature,” Mater. Chem. Phys., 111, 351-358, 2008.
  • R. J. Lang, “Ultrasonic atomization of liquids,” J. Acoust. Soc. Am., 34 (1), 6-8, 1962.
  • R. H. Bari, S. B. Patil, and A. R. Bari, “Spray-pyrolized nanostructured CuO thin films for H2S gas sensor,” Int. Nano Lett., 3, 1-5, 2013.
  • H. Ali, F. Bensaali and F. Jaber, “Novel approach to non-invasive blood glucose monitoring based on transmittance and refraction of visible laser light,” IEEE Access, 5, 9163-9174, 2017.
  • J. Tauc, R. Grigorovici and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Phys. Stat. Sol., 15, 627-637, 1966.
  • A. N. Hussein, S. K. Muhammad, S. A. Mohsin, and F. N. Ajeel, “Study on structure and optical properties of CuO thin films prepared by chemical spray pyrolysis,” Journal of Applied Physical Science International, 4(3), 178-184, 2015.
  • A. Moumen, B. Hartiti, E. Comini, Z. El Khalidi, H. M. M. M. Arachchige, S. Fadili, and P. Thevenin, “Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique,” Superlattices Microstruct., 127, 2-10, 2019.
  • Y. Akaltun, “Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction,” Thin Solid Films, 594, 30-34, 2015.
  • F. Bayansal, S. Kahraman, G. Çankaya, H. A. Çetinkara, H. S. Güder, and H. M. Çakmak, “Growth of homogenous CuO nano-structured thin films by a simple solution method,” J. Alloys Compd., 509(5), 2094-2098, 2011.
  • M. M. Abd El-Raheem, A. M. A. Amry, M. Al-Mokhtar, M. Al-Jalali, S. A. Amin, H. E. A. El-Sayed, and H. H. Al-Ofi, “Transport properties of aluminum-doped zinc oxide thin films,” Advances in Materials and Corrosion, 1, 30-35, 2012.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik
Bölüm Makaleler
Yazarlar

Havva Elif Lapa 0000-0002-5706-4641

Yayımlanma Tarihi 27 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 17 Sayı: 1

Kaynak Göster

IEEE H. E. Lapa, “Alttaş Sıcaklığına Bağlı Olarak Ultrasonik Sprey Piroliz Yöntemi ile Üretilen CuO İnce Filmlerin İncelenmesi”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, c. 17, sy. 1, ss. 195–208, 2022, doi: 10.29233/sdufeffd.1059663.