Research Article
BibTex RIS Cite

Investigation of the incorporation of C60 into PC61BM to enhance the photovoltaic performance of inverted-type perovskite solar cells based on MAPbI3

Year 2023, Volume: 18 Issue: 3, 276 - 283, 23.11.2023
https://doi.org/10.29233/sdufeffd.1381927

Abstract

Perovskite Solar Cells (PSCs) have managed to significantly capture attention by achieving efficiency values of 25.6% in a remarkably short period of around ten years. Each layer within the device plays a crucial role in the overall device efficiency when it comes to PSC production. PC61BM, a derivative of fullerene, is one of the most commonly used electron-transport layers (ETLs) in inverted-type PSCs. In this study, the improvement of the ETL was aimed by incorporating C60 into PC61BM, and the effects of the doped ETL on MAPbI3-based inverted-type PSCs were investigated. For inverted type PSCs which are fabricated under high humidity (40-60%) and room conditions (~25 °C), the power conversion efficiencies (PCEs) have boosted from 11.54% (for undoped PC61BM) to 13.40% (for C60-doped PC61BM). To comprehend the sources of improvement in the fabricated devices, a series of characterizations were carried out, including Current Density-Voltage (J-V), Hysteresis Factor (HF), Scanning Electron Microscope (SEM), and Atomic Force Microscope (AFM) measurements.

References

  • A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, 131, 6050–6051, 2009.
  • J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells”, Nature, 592, 381–385, 2021.
  • A. K. Jena, A. Kulkarni and T. Miyasaka, “Halide perovskite photovoltaics: background, status, and future prospects”, Chemical Reviews, 119, 3036–3103, 2019.
  • H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Scientific Reports, 2, 591, 2012.
  • M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science, 338, 643–647, 2012.
  • W. Hu, S. Yang and S. Yang, “Surface modification of TiO2 for perovskite solar cells”, Trends in Chemistry, 2, 148–162, 2020.
  • W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang and Y. Yan, “Lowerature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells”, Journal of the American Chemical Society, 137, 6730–6733, 2015.
  • Q. Jiang, X. Zhang and J. You, “SnO2: a wonderful electron transport layer for perovskite solar cells”, Small, 14, 1–14, 2018.
  • N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 258, 1474–1476, 1992.
  • R. Zahran and Z. Hawash, “Fullerene-based inverted perovskite solar cell: a key to achieve promising, stable, and efficient photovoltaics”, Advanced Materials Interfaces, 9, 1–18, 2022.
  • X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang and L. Han, “Efficiency progress of inverted perovskite solar cells”, Energy & Environmental Science, 13, 3823–3847, 2020.
  • M. A. Kumari, T. Swetha and S. P. Singh, “Fullerene derivatives: a review on perovskite solar cells”, Materials Express, 8, 389–406, 2018.
  • D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu and S. Priya, “Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers”, Nano Letters, 19, 3313–3320, 2019.
  • C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang and Y. Li, “Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells”, Nano Letters, 15, 2756–2762, 2015.
  • J. H. Bae, Y. J. Noh, M. Kang, D. Y. Kim, H. B. Kim, S. H. Oh, J. M. Yun and S. I. Na, “Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer”, RSC Advances, 6, 64962–64966, 2016.
  • F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu and S. Yang, “Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer”, ACS Applied Materials & Interfaces, 7, 13659–13665, 2015.
  • J. S. Yeo, R. Kang, S. Lee, Y. J. Jeon, N. S. Myoung, C. L. Lee, D. Y. Kim, J. M. Yun, Y. H. Seo, S. S. Kim and S. I. Na, “Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer”, Nano Energy, 12, 96–104, 2015.
  • X. Zhu, J. Sun, S. Yuan, N. Li, Z. Qiu, J. Jia, Y. Liu, J. Dong, P. Lv and B. Cao, “Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer”, New Journal of Chemistry, 43, 7130–7135, 2019.
  • Y. Wang, S. Dong, Y. Miao, D. Li, W. Qin, H. Cao, L. Yang, L. Li and S. Yin, “BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells”, IEEE Journal of Photovoltaics, 7, 550–557, 2017.
  • Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang and H. Yan, “High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer”, Journal of Materials Chemistry A, 3, 9098–9102, 2015.
  • E. M. Younes, A. Gurung, B. Bahrami, E.M. El-Maghraby and Q. Qiao, “Enhancing efficiency and stability of inverted structure perovskite solar cells with fullerene C60 doped PC61BM electron transport layer”, Carbon, 180, 226–236, 2021.
Year 2023, Volume: 18 Issue: 3, 276 - 283, 23.11.2023
https://doi.org/10.29233/sdufeffd.1381927

Abstract

References

  • A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, Journal of the American Chemical Society, 131, 6050–6051, 2009.
  • J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Grätzel and J. Y. Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells”, Nature, 592, 381–385, 2021.
  • A. K. Jena, A. Kulkarni and T. Miyasaka, “Halide perovskite photovoltaics: background, status, and future prospects”, Chemical Reviews, 119, 3036–3103, 2019.
  • H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Scientific Reports, 2, 591, 2012.
  • M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science, 338, 643–647, 2012.
  • W. Hu, S. Yang and S. Yang, “Surface modification of TiO2 for perovskite solar cells”, Trends in Chemistry, 2, 148–162, 2020.
  • W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang and Y. Yan, “Lowerature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells”, Journal of the American Chemical Society, 137, 6730–6733, 2015.
  • Q. Jiang, X. Zhang and J. You, “SnO2: a wonderful electron transport layer for perovskite solar cells”, Small, 14, 1–14, 2018.
  • N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science, 258, 1474–1476, 1992.
  • R. Zahran and Z. Hawash, “Fullerene-based inverted perovskite solar cell: a key to achieve promising, stable, and efficient photovoltaics”, Advanced Materials Interfaces, 9, 1–18, 2022.
  • X. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang and L. Han, “Efficiency progress of inverted perovskite solar cells”, Energy & Environmental Science, 13, 3823–3847, 2020.
  • M. A. Kumari, T. Swetha and S. P. Singh, “Fullerene derivatives: a review on perovskite solar cells”, Materials Express, 8, 389–406, 2018.
  • D. Yang, X. Zhang, K. Wang, C. Wu, R. Yang, Y. Hou, Y. Jiang, S. Liu and S. Priya, “Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers”, Nano Letters, 19, 3313–3320, 2019.
  • C. Kuang, G. Tang, T. Jiu, H. Yang, H. Liu, B. Li, W. Luo, X. Li, W. Zhang, F. Lu, J. Fang and Y. Li, “Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells”, Nano Letters, 15, 2756–2762, 2015.
  • J. H. Bae, Y. J. Noh, M. Kang, D. Y. Kim, H. B. Kim, S. H. Oh, J. M. Yun and S. I. Na, “Enhanced performance of perovskite solar cells with solution-processed n-doping of the PCBM interlayer”, RSC Advances, 6, 64962–64966, 2016.
  • F. Xia, Q. Wu, P. Zhou, Y. Li, X. Chen, Q. Liu, J. Zhu, S. Dai, Y. Lu and S. Yang, “Efficiency enhancement of inverted structure perovskite solar cells via oleamide doping of PCBM electron transport layer”, ACS Applied Materials & Interfaces, 7, 13659–13665, 2015.
  • J. S. Yeo, R. Kang, S. Lee, Y. J. Jeon, N. S. Myoung, C. L. Lee, D. Y. Kim, J. M. Yun, Y. H. Seo, S. S. Kim and S. I. Na, “Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer”, Nano Energy, 12, 96–104, 2015.
  • X. Zhu, J. Sun, S. Yuan, N. Li, Z. Qiu, J. Jia, Y. Liu, J. Dong, P. Lv and B. Cao, “Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer”, New Journal of Chemistry, 43, 7130–7135, 2019.
  • Y. Wang, S. Dong, Y. Miao, D. Li, W. Qin, H. Cao, L. Yang, L. Li and S. Yin, “BCP as additive for solution-processed PCBM electron transport layer in efficient planar heterojunction perovskite solar cells”, IEEE Journal of Photovoltaics, 7, 550–557, 2017.
  • Y. Bai, H. Yu, Z. Zhu, K. Jiang, T. Zhang, N. Zhao, S. Yang and H. Yan, “High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer”, Journal of Materials Chemistry A, 3, 9098–9102, 2015.
  • E. M. Younes, A. Gurung, B. Bahrami, E.M. El-Maghraby and Q. Qiao, “Enhancing efficiency and stability of inverted structure perovskite solar cells with fullerene C60 doped PC61BM electron transport layer”, Carbon, 180, 226–236, 2021.
There are 21 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, Material Physics, Surface Properties of Condensed Matter
Journal Section Makaleler
Authors

Mehmet Kazıcı 0000-0001-9048-7788

Publication Date November 23, 2023
Submission Date October 27, 2023
Acceptance Date November 15, 2023
Published in Issue Year 2023 Volume: 18 Issue: 3

Cite

IEEE M. Kazıcı, “Investigation of the incorporation of C60 into PC61BM to enhance the photovoltaic performance of inverted-type perovskite solar cells based on MAPbI3”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 18, no. 3, pp. 276–283, 2023, doi: 10.29233/sdufeffd.1381927.