INVESTIGATION OF URSODEOXYCHOLIC ACID EFFECTS ON SIROLIMUS TREATED ADIPOSE TISSUE-DERIVED MESENCHYMAL STEM CELLS
Year 2022,
, 324 - 334, 30.09.2022
Esra Arısu Naghavı
Bakiye Goker Bagca
,
Senem Tekeli
Gürkan Yiğittürk
,
Burak Gökçe
,
Canberk Tomruk
,
Türker Çavuşoğlu
,
Çığır Avcı
,
Cumhur Gündüz
,
Yiğit Uyanıkgil
Abstract
Objective
The usage of mesenchymal stem cells (MSC) with
immunosuppressive drugs after organ transplantation
is becoming remarkable in clinical applications.
However, the drugs negatively affect MSCs.
Ursodeoxycholic acid (UDCA), which is an antioxidant
molecule, may reverse these effects. The study aims
that to determine the effects of sirolimus and UDCA
on human adipose tissue-derived MSCs (ADMSCs)
individually and in combination.
Material and Method
The cytotoxicity of the agents was evaluated by
WST-1 test in time and dose-dependent manner.
The combinational effects were determined using
isobologram analysis. Muse cell analyzer was used for
the evaluation of apoptosis and cell cycle. Oxidative
stress markers were measured by biochemical methods.
Results
IC50 dose of sirolimus was determined as 18.58μM
in the 48th hour. Because no cytotoxic effect was
observed at the studied doses of UDCA, the apoptosis,
cell cycle, and oxidative stress indicator analyses
were continued with a safe dose of 100 μM. Sirolimus
promoted apoptosis and inhibited cell proliferation.
It was determined that UDCA reduced the apoptotic
and anti-proliferative effects of sirolimus on ADMSCs
with its anti-oxidant property.
Conclusion
The UDCA treatment in combination with
immunosuppressive therapy after organ and tissue
transplantation may have positive effects on ADMSCs.
Supporting Institution
Ege University Research Foundation
Project Number
2015/TIP/010
References
- 1. Wong CJ, Pagalilauan G. Primary Care of the Solid Organ
Transplant Recipient. Med Clin North Am. 2015;99(5):1075-
1103. doi:10.1016/j.mcna.2015.05.002
- 2. Watson CJE, Dark JH. Organ transplantation: historical perspective
and current practice. Br J Anaesth. 2012;108(suppl
1):i29-i42. doi:10.1093/bja/aer384
- 3. Halloran PF. Immunosuppressive drugs for kidney transplantation.
N Engl J Med. 2004;351(26):2715-2729. doi:10.1056/
NEJMra033540
- 4. Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target
of rapamycin (mTOR) for health and diseases. Drug Discov Today.
2007;12(3-4):112-124. doi:10.1016/j.drudis.2006.12.008
- 5. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells:
Environmentally responsive therapeutics for regenerative
medicine. Exp Mol Med. Published online 2013. doi:10.1038/
emm.2013.94
- 6. Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal
Stem Cell: Keystone of the Hematopoietic Stem Cell Niche
and a Stepping-Stone for Regenerative Medicine. Annu Rev
Immunol. Published online 2013. doi:10.1146/annurev-immunol-
032712-095919
- 7. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of
mesenchymal stem cells. Cell Death Differ. Published online
2014. doi:10.1038/cdd.2013.158
- 8. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA,
Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking
action mechanisms to therapeutic applications. Clin Sci.
2011;121(12):523-544. doi:10.1042/CS20110184
- 9. Lapenna D, Ciofani G, Festi D, et al. Antioxidant properties of
ursodeoxycholic acid. Biochem Pharmacol. 2002;64(11):1661-
1667. doi:10.1016/S0006-2952(02)01391-6
- 10. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive
agents in solid organ transplantation: Mechanisms of action
and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1
SPEC. ISS.):23-46. doi:10.1016/j.critrevonc.2005.03.012
- 11. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent
cell survival mechanisms. Cold Spring Harb Perspect
Biol. Published online 2012. doi:10.1101/cshperspect.a008771
- 12. Hay N, Sonenberg N. Upstream and downstream of mTOR.
Genes Dev. Published online 2004. doi:10.1101/gad.1212704
- 13. Sir G, Goker Bagca B, Yigitturk G, et al. Antagonistic Effect of
Oxytocin and Tacrolimus Combination on Adipose Tissue - Derived
Mesenchymal Stem Cells: Antagonistic effect of oxytocin
and tacrolimus. Biomed Pharmacother. 2018;97:1173-1181.
doi:10.1016/j.biopha.2017.10.076
- 14. Gonwa TA, Hricik DE, Brinker K, Grinyo JM, Schena FP. Improved
renal function in sirolimus-treated renal transplant patients
after early cyclosporine elimination. Transplantation. Published
online 2002. doi:10.1097/00007890-200212150-00013
- 15. Horoz M. Calcineurin and mTOR Inhibitor Nephrotoxicity. Turkiye
Klin Nephrol. 2016;9(2):44-52.
- 16. Hoogduijn MJ, Crop MJ, Korevaar SS, et al. Susceptibility of
Human Mesenchymal Stem Cells to Tacrolimus, Mycophenolic
Acid, and Rapamycin. Transplantation. 2008;86(9):1283-1291.
doi:10.1097/TP.0b013e31818aa536
- 17. Buron F, Perrin H, Malcus C, et al. Human Mesenchymal Stem
Cells and Immunosuppressive Drug Interactions in Allogeneic
Responses: An In Vitro Study Using Human Cells. Transplant
Proc. 2009;41(8):3347-3352. doi:10.1016/j.transproceed.
2009.08.030
- 18. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications
and biological characterization. Int J Biochem Cell Biol.
2004;36(4):568-584. doi:10.1016/j.biocel.2003.11.001
- 19. Peng Y, Ke M, Xu L, et al. Donor-derived mesenchymal stem
cells combined with low-dose tacrolimus prevent acute rejection
after renal transplantation: A clinical pilot study. Transplantation.
Published online 2013. doi:10.1097/TP.0b013e3182754c53
- 20. Cutler C, Antin JH. Sirolimus for GVHD prophylaxis in allogeneic
stem cell transplantation. Bone Marrow Transplant. Published
online 2004. doi:10.1038/sj.bmt.1704604
- 21. Perruccio K, Mastrodicasa E, Arcioni F, et al. Sirolimus-Based
Immunosuppression as GvHD Prophylaxis after Bone Marrow
Transplantation for Severe Aplastic Anaemia: A Case Report
and Review of the Literature. Case Rep Hematol. Published
online 2015. doi:10.1155/2015/321602
- 22. Biray Avci, C, Yilmaz Susluer, S, Sigva Dogan, ZO, Sogutlu,
F, Dundar, M, Gunduz C. The effect of rapamycin in prostate
cancer cell lines. Ege J Med. 2013;52(1):7-14.
- 23. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: Mechanism of
action and novel clinical applications. Hepatol Res. Published
online 2008. doi:10.1111/j.1872-034X.2007.00297.x
- 24. Ruutu T, Eriksson B, Remes K, et al. Ursodeoxycholic acid for
the prevention of hepatic complications in allogeneic stem cell
transplantation. Blood. Published online 2002. doi:10.1182/blood-
2001-12-0159
- 25. Ruutu T, Juvonen E, Remberger M, et al. Improved Survival
with Ursodeoxycholic Acid Prophylaxis in Allogeneic Stem
Cell Transplantation: Long-Term Follow-Up of a Randomized
Study. Biol Blood Marrow Transplant. 2014;20(1):135-138. doi:
10.1016/j.bbmt.2013.10.014
- 26. Wang L, Han Q, Chen H, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resis-
tant primary biliary cirrhosis. Stem Cells Dev. Published online
2014. doi:10.1089/scd.2013.0500
- 27. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid
“mechanisms of action and clinical use in hepatobiliary disorders.”
J Hepatol. Published online 2001. doi:10.1016/S0168-
8278(01)00092-7
- 28. Poupon R, Poupon RE. Ursodeoxycholic acid therapy of chronic
cholestatic conditions in adults and children. Pharmacol
Ther. 1995;66(1):1-15.
- 29. Qi H-P, Wei S-Q, Gao X-C, et al. Ursodeoxycholic acid prevents
selenite-induced oxidative stress and alleviates cataract
formation: In vitro and in vivo studies. Mol Vis. 2012;18(January):
151-160.
- 30. M K. mTOR signaling pathway and mTOR inhibitors in the treatment
of cancer. Dicle Med J. 2013;40(1):156-160.
- 31. Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. A novel
role for ursodeoxycholic acid in inhibiting apoptosis by modulating
mitochondrial membrane perturbation. J Clin Invest.
1998;101(12):2790-2799. doi:10.1172/JCI1325
- 32. Ji WJ, Qu Q, Jin Y, Zhao L, He XD. Ursodeoxycholic acid inhibits
hepatocyte-like cell apoptosis by down-regulating the expressions
of Bax and Caspase-3. Natl Med J China. Published
online 2009. doi:10.3760/cma.j.issn.0376-2491.2009.42.014
- 33. Amaral JD, Castro RE, Solá S, Steer CJ, Rodrigues CMP. p53
is a key molecular target of ursodeoxycholic acid in regulating
apoptosis. J Biol Chem. Published online 2007. doi:10.1074/
jbc.M704075200
- 34. Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K. Nuclear
DNA fragmentation and expression of Bcl-2 in primary biliary
cirrhosis. Hepatology. 1997;25(5):1077-1084. doi:10.1002/
hep.510250505
- 35. Perez MJ, Britz O. Bile-acid-induced cell injury and protection.
World J Gastroenterol. 2009;15(14):1677-1689. doi:10.3748/
wjg.15.1677
- 36. Qiao L, Yacoub A, Studer E, et al. Inhibition of the MAPK and
PI3K pathways enhances UDCA-induced apoptosis in primary
rodent hepatocytes. Hepatology. 2002;35(4):779-789.
doi:10.1053/jhep.2002.32533
- 37. Rodrigues CMP, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic
acid may inhibit deoxycholic acid-induced apoptosis
by modulating mitochondrial transmembrane potential and reactive
oxygen species production. Mol Med. Published online
1998. doi:10.1007/bf03401914
- 38. Hempfling W, Dilger K, Beuers U. Systematic review: Ursodeoxycholic acid - Adverse effects and drug interactions. Aliment
Pharmacol Ther. Published online 2003. doi:10.1046/j.1365-
2036.2003.01792.x
- 39. Kowdley K V. Ursodeoxycholic acid therapy in hepatobiliary disease. Am J Med. Published online 2000. doi:10.1016/S0002-
9343(00)00318-1
- 40. Kotb MA. Molecular mechanisms of ursodeoxycholic acid toxicity
& side effects: Ursodeoxycholic acid freezes regeneration
& induces hibernation mode. Int J Mol Sci. 2012;13(7):8882-
8914. doi:10.3390/ijms13078882
- 41. Serviddio G, Pereda J, Pallardó F V., et al. Ursodeoxycholic
Acid Protects against Secondary Biliary Cirrhosis in Rats by
Preventing Mitochondrial Oxidative Stress. Hepatology. Published
online 2004. doi:10.1002/hep.20101
- 42. Tsagarakis NJ, Drygiannakis I, Batistakis AG, Kolios G, Kouroumalis
EA. A concentration-dependent effect of ursodeoxycholate
on apoptosis and caspases activities of HepG2 hepatocellular
carcinoma cells. Eur J Pharmacol. 2010;640(1-3):1-7.
doi:10.1016/j.ejphar.2010.04.023
- 43. Akdemir A, Sahin C, Erbas O, Yeniel AO, Sendag F. Is ursodeoxycholic
acid crucial for ischemia/reperfusion-induced ovarian
injury in rat ovary? Arch Gynecol Obstet. 2015;292(2):445-450.
doi:10.1007/s00404-015-3646-9
URSODEOKSİKOLİK ASİTİN SİROLİMUS UYGULANAN YAĞ DOKUSU KÖKENLİ MEZENKİMAL KÖK HÜCRELER ÜZERİNE ETKİLERİNİN İNCELENMESİ
Year 2022,
, 324 - 334, 30.09.2022
Esra Arısu Naghavı
Bakiye Goker Bagca
,
Senem Tekeli
Gürkan Yiğittürk
,
Burak Gökçe
,
Canberk Tomruk
,
Türker Çavuşoğlu
,
Çığır Avcı
,
Cumhur Gündüz
,
Yiğit Uyanıkgil
Abstract
Amaç
Organ nakli sonrası mezenkimal kök hücrelerin (MKH)
immünosupresif ilaçlarla birlikte kullanımı klinik uygulamalarda
dikkat çekici hale gelmektedir. Bununla
birlikte, ilaçlar MKH'leri olumsuz yönde etkilemektedir.
Antioksidan bir molekül olan ursodeoksikolik asit
(UDKA) bu etkileri tersine çevirebilecektir. Bu çalışmanın
amacı, sirolimus ve UDKA'nın bireysel ve kombinasyon
olarak uygulanmasının insan yağ dokusu
kaynaklı MKH'ler (YDKMKH) üzerindeki etkilerinin
incelenmesidir.
Gereç ve Yöntem
Etken maddelerin sitotoksik etkileri zamana ve doza
bağlı WST-1 testi ile değerlendirildi. Kombinasyon
etkileri, izobologram analizi kullanılarak belirlendi.
Apoptoz ve hücre döngüsünün değerlendirilmesi için
Muse hücre analizörü kullanıldı. Oksidatif stress belirteçlerinin
değişimi biyokimyasal yöntemle ölçüldü.
Bulgular
Sirolimusun IC50 dozu 48. saatte 18.58μM olarak
belirlendi. UDKA uygulanan doz aralığında sitotoksik
etki belirlenmediği için apoptoz, hücre döngüsü ve
oksidatif stres indikatör analizlerine 100 μM güvenli
doz ile devam edildi. Sirolimusun, apoptozu teşvik ettiği
ve hücre proliferasyonunu inhibe ettiği belirlendi.
UDKA'nın antioksidan özelliği ile sirolimusun YDKMKH'ler
üzerindeki apoptotik ve antiproliferatif etkilerini
azalttığı belirlendi.
Sonuç
Organ ve doku transplantasyonu sonrası immünosupresif
tedavi ile kombinasyon halinde UDKA tedavisinin
YDKMKH'ler üzerinde olumlu etkileri olabilecektir.
Project Number
2015/TIP/010
References
- 1. Wong CJ, Pagalilauan G. Primary Care of the Solid Organ
Transplant Recipient. Med Clin North Am. 2015;99(5):1075-
1103. doi:10.1016/j.mcna.2015.05.002
- 2. Watson CJE, Dark JH. Organ transplantation: historical perspective
and current practice. Br J Anaesth. 2012;108(suppl
1):i29-i42. doi:10.1093/bja/aer384
- 3. Halloran PF. Immunosuppressive drugs for kidney transplantation.
N Engl J Med. 2004;351(26):2715-2729. doi:10.1056/
NEJMra033540
- 4. Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target
of rapamycin (mTOR) for health and diseases. Drug Discov Today.
2007;12(3-4):112-124. doi:10.1016/j.drudis.2006.12.008
- 5. Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells:
Environmentally responsive therapeutics for regenerative
medicine. Exp Mol Med. Published online 2013. doi:10.1038/
emm.2013.94
- 6. Frenette PS, Pinho S, Lucas D, Scheiermann C. Mesenchymal
Stem Cell: Keystone of the Hematopoietic Stem Cell Niche
and a Stepping-Stone for Regenerative Medicine. Annu Rev
Immunol. Published online 2013. doi:10.1146/annurev-immunol-
032712-095919
- 7. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of
mesenchymal stem cells. Cell Death Differ. Published online
2014. doi:10.1038/cdd.2013.158
- 8. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA,
Sánchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: linking
action mechanisms to therapeutic applications. Clin Sci.
2011;121(12):523-544. doi:10.1042/CS20110184
- 9. Lapenna D, Ciofani G, Festi D, et al. Antioxidant properties of
ursodeoxycholic acid. Biochem Pharmacol. 2002;64(11):1661-
1667. doi:10.1016/S0006-2952(02)01391-6
- 10. Taylor AL, Watson CJE, Bradley JA. Immunosuppressive
agents in solid organ transplantation: Mechanisms of action
and therapeutic efficacy. Crit Rev Oncol Hematol. 2005;56(1
SPEC. ISS.):23-46. doi:10.1016/j.critrevonc.2005.03.012
- 11. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA. mTOR-dependent
cell survival mechanisms. Cold Spring Harb Perspect
Biol. Published online 2012. doi:10.1101/cshperspect.a008771
- 12. Hay N, Sonenberg N. Upstream and downstream of mTOR.
Genes Dev. Published online 2004. doi:10.1101/gad.1212704
- 13. Sir G, Goker Bagca B, Yigitturk G, et al. Antagonistic Effect of
Oxytocin and Tacrolimus Combination on Adipose Tissue - Derived
Mesenchymal Stem Cells: Antagonistic effect of oxytocin
and tacrolimus. Biomed Pharmacother. 2018;97:1173-1181.
doi:10.1016/j.biopha.2017.10.076
- 14. Gonwa TA, Hricik DE, Brinker K, Grinyo JM, Schena FP. Improved
renal function in sirolimus-treated renal transplant patients
after early cyclosporine elimination. Transplantation. Published
online 2002. doi:10.1097/00007890-200212150-00013
- 15. Horoz M. Calcineurin and mTOR Inhibitor Nephrotoxicity. Turkiye
Klin Nephrol. 2016;9(2):44-52.
- 16. Hoogduijn MJ, Crop MJ, Korevaar SS, et al. Susceptibility of
Human Mesenchymal Stem Cells to Tacrolimus, Mycophenolic
Acid, and Rapamycin. Transplantation. 2008;86(9):1283-1291.
doi:10.1097/TP.0b013e31818aa536
- 17. Buron F, Perrin H, Malcus C, et al. Human Mesenchymal Stem
Cells and Immunosuppressive Drug Interactions in Allogeneic
Responses: An In Vitro Study Using Human Cells. Transplant
Proc. 2009;41(8):3347-3352. doi:10.1016/j.transproceed.
2009.08.030
- 18. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications
and biological characterization. Int J Biochem Cell Biol.
2004;36(4):568-584. doi:10.1016/j.biocel.2003.11.001
- 19. Peng Y, Ke M, Xu L, et al. Donor-derived mesenchymal stem
cells combined with low-dose tacrolimus prevent acute rejection
after renal transplantation: A clinical pilot study. Transplantation.
Published online 2013. doi:10.1097/TP.0b013e3182754c53
- 20. Cutler C, Antin JH. Sirolimus for GVHD prophylaxis in allogeneic
stem cell transplantation. Bone Marrow Transplant. Published
online 2004. doi:10.1038/sj.bmt.1704604
- 21. Perruccio K, Mastrodicasa E, Arcioni F, et al. Sirolimus-Based
Immunosuppression as GvHD Prophylaxis after Bone Marrow
Transplantation for Severe Aplastic Anaemia: A Case Report
and Review of the Literature. Case Rep Hematol. Published
online 2015. doi:10.1155/2015/321602
- 22. Biray Avci, C, Yilmaz Susluer, S, Sigva Dogan, ZO, Sogutlu,
F, Dundar, M, Gunduz C. The effect of rapamycin in prostate
cancer cell lines. Ege J Med. 2013;52(1):7-14.
- 23. Ikegami T, Matsuzaki Y. Ursodeoxycholic acid: Mechanism of
action and novel clinical applications. Hepatol Res. Published
online 2008. doi:10.1111/j.1872-034X.2007.00297.x
- 24. Ruutu T, Eriksson B, Remes K, et al. Ursodeoxycholic acid for
the prevention of hepatic complications in allogeneic stem cell
transplantation. Blood. Published online 2002. doi:10.1182/blood-
2001-12-0159
- 25. Ruutu T, Juvonen E, Remberger M, et al. Improved Survival
with Ursodeoxycholic Acid Prophylaxis in Allogeneic Stem
Cell Transplantation: Long-Term Follow-Up of a Randomized
Study. Biol Blood Marrow Transplant. 2014;20(1):135-138. doi:
10.1016/j.bbmt.2013.10.014
- 26. Wang L, Han Q, Chen H, et al. Allogeneic bone marrow mesenchymal stem cell transplantation in patients with UDCA-resis-
tant primary biliary cirrhosis. Stem Cells Dev. Published online
2014. doi:10.1089/scd.2013.0500
- 27. Lazaridis KN, Gores GJ, Lindor KD. Ursodeoxycholic acid
“mechanisms of action and clinical use in hepatobiliary disorders.”
J Hepatol. Published online 2001. doi:10.1016/S0168-
8278(01)00092-7
- 28. Poupon R, Poupon RE. Ursodeoxycholic acid therapy of chronic
cholestatic conditions in adults and children. Pharmacol
Ther. 1995;66(1):1-15.
- 29. Qi H-P, Wei S-Q, Gao X-C, et al. Ursodeoxycholic acid prevents
selenite-induced oxidative stress and alleviates cataract
formation: In vitro and in vivo studies. Mol Vis. 2012;18(January):
151-160.
- 30. M K. mTOR signaling pathway and mTOR inhibitors in the treatment
of cancer. Dicle Med J. 2013;40(1):156-160.
- 31. Rodrigues CMP, Fan G, Ma X, Kren BT, Steer CJ. A novel
role for ursodeoxycholic acid in inhibiting apoptosis by modulating
mitochondrial membrane perturbation. J Clin Invest.
1998;101(12):2790-2799. doi:10.1172/JCI1325
- 32. Ji WJ, Qu Q, Jin Y, Zhao L, He XD. Ursodeoxycholic acid inhibits
hepatocyte-like cell apoptosis by down-regulating the expressions
of Bax and Caspase-3. Natl Med J China. Published
online 2009. doi:10.3760/cma.j.issn.0376-2491.2009.42.014
- 33. Amaral JD, Castro RE, Solá S, Steer CJ, Rodrigues CMP. p53
is a key molecular target of ursodeoxycholic acid in regulating
apoptosis. J Biol Chem. Published online 2007. doi:10.1074/
jbc.M704075200
- 34. Koga H, Sakisaka S, Ohishi M, Sata M, Tanikawa K. Nuclear
DNA fragmentation and expression of Bcl-2 in primary biliary
cirrhosis. Hepatology. 1997;25(5):1077-1084. doi:10.1002/
hep.510250505
- 35. Perez MJ, Britz O. Bile-acid-induced cell injury and protection.
World J Gastroenterol. 2009;15(14):1677-1689. doi:10.3748/
wjg.15.1677
- 36. Qiao L, Yacoub A, Studer E, et al. Inhibition of the MAPK and
PI3K pathways enhances UDCA-induced apoptosis in primary
rodent hepatocytes. Hepatology. 2002;35(4):779-789.
doi:10.1053/jhep.2002.32533
- 37. Rodrigues CMP, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic
acid may inhibit deoxycholic acid-induced apoptosis
by modulating mitochondrial transmembrane potential and reactive
oxygen species production. Mol Med. Published online
1998. doi:10.1007/bf03401914
- 38. Hempfling W, Dilger K, Beuers U. Systematic review: Ursodeoxycholic acid - Adverse effects and drug interactions. Aliment
Pharmacol Ther. Published online 2003. doi:10.1046/j.1365-
2036.2003.01792.x
- 39. Kowdley K V. Ursodeoxycholic acid therapy in hepatobiliary disease. Am J Med. Published online 2000. doi:10.1016/S0002-
9343(00)00318-1
- 40. Kotb MA. Molecular mechanisms of ursodeoxycholic acid toxicity
& side effects: Ursodeoxycholic acid freezes regeneration
& induces hibernation mode. Int J Mol Sci. 2012;13(7):8882-
8914. doi:10.3390/ijms13078882
- 41. Serviddio G, Pereda J, Pallardó F V., et al. Ursodeoxycholic
Acid Protects against Secondary Biliary Cirrhosis in Rats by
Preventing Mitochondrial Oxidative Stress. Hepatology. Published
online 2004. doi:10.1002/hep.20101
- 42. Tsagarakis NJ, Drygiannakis I, Batistakis AG, Kolios G, Kouroumalis
EA. A concentration-dependent effect of ursodeoxycholate
on apoptosis and caspases activities of HepG2 hepatocellular
carcinoma cells. Eur J Pharmacol. 2010;640(1-3):1-7.
doi:10.1016/j.ejphar.2010.04.023
- 43. Akdemir A, Sahin C, Erbas O, Yeniel AO, Sendag F. Is ursodeoxycholic
acid crucial for ischemia/reperfusion-induced ovarian
injury in rat ovary? Arch Gynecol Obstet. 2015;292(2):445-450.
doi:10.1007/s00404-015-3646-9