Research Article
BibTex RIS Cite

HÜCRE KÜLTÜRÜ ORTAMINDA KARVAKROLÜN KOBALT KLORÜR İLE İNDÜKLENEN KİMYASAL HİPOKSİDEKİ KORUYUCU ROLÜ

Year 2023, , 354 - 361, 23.09.2023
https://doi.org/10.17343/sdutfd.1261969

Abstract

Amaç
Hipoksi nöronal hasar açısından en önemli faktörlerden
biridir. Nöronlarda eksprese edilen TRPM7 katyon
kanallarının hipoksi ve hücresel pH değişimleri
dahil birçok faktörle aktive olduğu bilinmektedir. Bu
nedenle bu araştırmada deneysel çalışmalarda hipoksi
modeli oluşturmak için sıklıkla kullanılan kobalt
klorür (CoCl2) ile indüklenen in vitro hipoksi modelinde
TRPM7 katyon kanallarının güçlü blokörü karvakrolün
hücresel sağkalım ve ölüm parametreleri üzerine etkisinin
araştırılması amaçlanmıştır.
Gereç ve Yöntem
SH-SY5Y hücreleri kültür flasklarında çoğaltıldı. Hücrelere
hipoksi uygulaması için 200 μM CoCl2 içeren
medyum ile 24 saat inkübasyon yapıldı. Karvakrolün
etkisinin sınandığı grupta ise hücreler TRPM7 kanal
inhibisyonunu sağlamak üzere 1 saat karvakrol (250
μM) içeren medyum ile inkübe edildikten sonra hipoksi
uygulanarak inkübasyon tamamlandı. Ardından kültür
kaplarından kaldırılan hücreler, apoptoz testi, MTT
hücre canlılığı analizi, reaktif oksijen türleri (ROT)
üretimi tayini, mitokondriyal membran depolarizasyonu
(MMD) tayini ve kaspaz 3, 8 ve 9 enzim aktiviteleri
tayini yapıldı.
Bulgular
Kontrole kıyasla hipoksi uygulaması yapılan grupta
hücre canlılığı azalırken canlılığın azaldığını gösteren
diğer parametrelerde (apoptoz, ROT üretimi, MMD
ve kaspaz aktivitelerinde) artış olduğu belirlendi. Karvakrol
ön inkübasyonu sonrasında CoCl2 ile hipoksi
uygulanan grupta ise hücresel canlılığın düştüğünü
gösteren parametrelerin yalnız CoCl2 uygulanan gruba
kıyasla anlamlı ölçüde azaldığı gözlemlendi.
Sonuç
Karvakrol uygulaması ile hipoksik koşulların ortaya çıkardığı
anormal hücresel hasar durumu ve hücresel
ölüm mekanizmaları yavaşlatılabilmektedir. TRPM7
katyon kanal ekspresyonu iyi bilinen SH-SY5Y hücrelerinde
karvakrolün olumlu etkilerinin daha çok
TRPM7 kanalları aracılı gerçekleştiği düşünülmektedir.

References

  • 1. Span PN, Bussink J. Biology of hypoxia. Semin Nucl Med. 2015;45(2):101–9.
  • 2. Uğuz AC, Öz A, Yilmaz B, Altunbaş S, Çelik Ö. Melatonin attenuates apoptosis and mitochondrial depolarization levels in hypoxic conditions of SH-SY5Y neuronal cells induced by cobalt chloride (CoCl2). Turkish Journal of Biology. 2015;39(6):896– 903.
  • 3. Ardyanto TD, Osaki M, Tokuyasu N, Nagahama Y, Ito H. CoCl2-induced HIF-1α expression correlates with proliferation and apoptosis in MKN-1 cells: A possible role for the PI3K/Akt pathway. Int J Oncol. 2006;29(3):549–55.
  • 4. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49(1):1–15.
  • 5. Sun HS. Role of TRPM7 in cerebral ischaemia and hypoxia. Journal of Physiology. 2017;595(10):3077–83.
  • 6. Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta Mol Cell Res. 2014;1843(9):1839–50.
  • 7. Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, et al. Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7s. Journal of Biological Chemistry. 2007;282(35):25817–25830.
  • 8. Bytyqi-Damoni A, Kestane A, Taslimi P, Tuzun B, Zengin M, Bilgicli HG, et al. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J Mol Struct. 2020;1202:1–12.
  • 9. Mastelic J, Jerkovic I, Blažević I, Poljak-Blaži M, Borović S, Ivančić-Baće I, et al. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem. 2008;56(11):3989–96.
  • 10. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol.2008 Sep;47(3):174–9.
  • 11. López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP, Ornelas-Paz JDJ, Zamudio-Flores PB, Burruel-Ibarra SE. Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules. 2013;18(11):13735–53.
  • 12. de Carvalho FO, Silva ÉR, Gomes IA, Santana HSR, do Nascimento Santos D, de Oliveira Souza GP, et al. Anti‐inflammatory and antioxidant activity of carvacrol in the respiratory system: A systematic review and meta‐analysis. Phytotherapy Research. 2020;34(9):2214–29.
  • 13. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, et al. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium. 2009;45(3):300–9.
  • 14. Nazıroğlu M. A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis. 2022;37(3):711–28.
  • 15. Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener.2017;12(10):1–11.
  • 16. Öz A, Çelik Ö. The effects of neuronal cell differentiation on TRPM7, TRPM8 and TRPV1 channels in the model of Parkinson’s disease. Neurol Res. 2022;44(1):24–37.
  • 17. Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Feng BGZ ping, et al. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions in vivo. 2022;(March):1483–91.
  • 18. Abumaria N, Li W, Clarkson AN. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cellular and Molecular Life Sciences. 2019;76(17):3301–10. Available from: https://doi.org/10.1007/s00018-019-03124-2
  • 19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal Biochem. 1976;72(1–2):248–54.
  • 20. Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol Neurobiol. 2021;58(11):5581–601.
  • 21. Öz A, Çelik Ö, Övey İS. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells. Journal of Cellular Neuroscience and Oxidative Stress. 2017;9(2):617–29.
  • 22. Çiğ B, Yildizhan K. Resveratrol diminishes bisphenol A-induced oxidative stress through TRPM2 channel in the mouse kidney cortical collecting duct cells. Journal of Receptors and Signal Transduction. 2020;40(6):570–83.
  • 23. Övey İS, Nazıroğlu M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. Journal of Receptors and Signal Transduction. 2020;41(3):273–83.
  • 24. González D, Espino J, Bejarano I, López JJ, Rodríguez AB, Pariente JA. Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem. 2010;333(1– 2):151–7.
  • 25. Dreos R, Ambrosini G, Périer RC, Bucher P. The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res. 2015 Jan;43:D92-6.
  • 26. Öz A. Experimental cell culture models for investigating neurodegenerative diseases. J Cell Neurosci Oxid Stress. 2019;11(2):835–51.
  • 27. Chen Y, Liu L, Xia L, Wu N, Wang Y, Li H, et al. TRPM7 silencing modulates glucose metabolic reprogramming to inhibit the growth of ovarian cancer by enhancing AMPK activation to promote HIF-1α degradation. Journal of Experimental and Clinical Cancer Research. 2022;41(1):1–19.
  • 28. Römmelt C, Munsch T, Drynda A, Lessmann V, Lohmann CH, Bertrand J. Periprosthetic hypoxia as consequence of TRPM7 mediated cobalt influx in osteoblasts. J Biomed Mater Res B Appl Biomater. 2019;107(6):1806–13.
  • 29. Ranjbar Taklimie F, Gasterich N, Scheld M, Weiskirchen R, Beyer C, Clarner T, et al. Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke. Int J Mol Sci. 2019 Mar;20(6).
  • 30. Song S, Park JT, Na JY, Park MS, Lee JK, Lee MC, et al. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia. Neural Regen Res. 2014 May;9(9):912–8.
  • 31. Kung-Chun Chiu D, Pui-Wah Tse A, Law CT, Ming-Jing Xu I, Lee D, Chen M, et al. Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death Dis. 2019 Dec;10(12):934.
  • 32. Öz A, Uğuz AC. Migren patogenezinde oksidatif strese duyarlı TRP kanallarının rolleri. SDÜ Tıp Fakültesi Dergisi. 2016;22(4):144–50.
  • 33. Nazıroğlu M. A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis. 2022;37(3):711–28. Available from: https://doi.org/10.1007/s11011-021-00887-1
  • 34. Sun HS, Horgen FD, Romo D, Hull KG, Kiledal SA, Fleig A, et al. Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacol Sin. 2020;41(12):1519–24. Available from: http://dx.doi.org/10.1038/s41401-020-00512-4
  • 35. Slemc L, Kunej T. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumor Biology. 2016;37:14851–61.
  • 36. Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D, et al. Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal. 2011;14(10):1815–27.
  • 37. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science (1979). 2008;322(5902):756–60.
  • 38. Sun Y, Sukumaran P, Singh BB. Magnesium-Induced Cell Survival Is Dependent on TRPM7 Expression and Function. Mol Neurobiol. 2020;57(1):528–38.
  • 39. Turlova E, Ji D, Deurloo M, Wong R, Fleig A, Horgen FD, et al. Hypoxia-Induced Neurite Outgrowth Involves Regulation Through TRPM7. Mol Neurobiol. 2023;60(2):836–50. Available from: https://doi.org/10.1007/s12035-022-03114-9
  • 40. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. 2015;1–13.

PROTECTIVE ROLE OF CARVACROL IN COBALT CHLORIDE-INDUCED CHEMICAL HYPOXIA IN CELL CULTURE MEDIA

Year 2023, , 354 - 361, 23.09.2023
https://doi.org/10.17343/sdutfd.1261969

Abstract

Objective
Hypoxia is among the most important factors
regarding to neuronal injury. TRPM7 cation channels,
which are expressed in neurons, and it is well
known that TRPM7 channels are activated by many
factors including hypoxia and cellular pH changes.
Therefore, in this study, it was aimed to investigate
the effect of carvacrol, a potent inhibitor of TRPM7
cation channels, on cellular survival and apoptotic
parameters in an in vitro hypoxia model induced by
cobalt chloride (CoCl2), which is frequently used to do
hypoxia in experimental studies.
Material and Method
The SH-SY5Y cells were grown in cell culture flasks.
Cells were incubated for 24 hours with medium
containing 200 μM CoCl2 to induction of hypoxia. In
the group, in which the effect of carvacrol was tested,
the cells were incubated with a medium containing
carvacrol (250 μM) for 1 h to TRPM7 channel
inhibition, and the incubation was completed by
applying hypoxia for 24 h. Then, the cells detached
from the culture flasks and apoptosis test, MTT cell
viability analysis, reactive oxygen species (ROT)
production determination, mitochondrial membrane
depolarization (MMD) determination and caspase 3,
8 and 9 enzyme activities were performed.
Results
It was demonstrated that while cell viability decreased
in the hypoxia-induced group compared to the
control, there was an increase in other parameters
(apoptosis, ROS production, MMD and caspase
activities) that reduced to cell viability. It was observed
that the parameters reducing cellular viability were
significantly decreased in the hypoxia-treated group
upon carvacrol pre-incubation compared to the CoCl2
group.
Conclusion
Carvacrol administration can be slowed down to
abnormal cellular damage and cell death mechanisms
caused by hypoxic conditions. It is thought that the
positive effects of carvacrol in SH-SY5Y cells, whose
TRPM7 cation channel expression is well known, are
mediated by mostly TRPM7 channels.

References

  • 1. Span PN, Bussink J. Biology of hypoxia. Semin Nucl Med. 2015;45(2):101–9.
  • 2. Uğuz AC, Öz A, Yilmaz B, Altunbaş S, Çelik Ö. Melatonin attenuates apoptosis and mitochondrial depolarization levels in hypoxic conditions of SH-SY5Y neuronal cells induced by cobalt chloride (CoCl2). Turkish Journal of Biology. 2015;39(6):896– 903.
  • 3. Ardyanto TD, Osaki M, Tokuyasu N, Nagahama Y, Ito H. CoCl2-induced HIF-1α expression correlates with proliferation and apoptosis in MKN-1 cells: A possible role for the PI3K/Akt pathway. Int J Oncol. 2006;29(3):549–55.
  • 4. Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol. 2014;49(1):1–15.
  • 5. Sun HS. Role of TRPM7 in cerebral ischaemia and hypoxia. Journal of Physiology. 2017;595(10):3077–83.
  • 6. Sun Y, Sukumaran P, Varma A, Derry S, Sahmoun AE, Singh BB. Cholesterol-induced activation of TRPM7 regulates cell proliferation, migration, and viability of human prostate cells. Biochim Biophys Acta Mol Cell Res. 2014;1843(9):1839–50.
  • 7. Li M, Du J, Jiang J, Ratzan W, Su LT, Runnels LW, et al. Molecular Determinants of Mg2+ and Ca2+ Permeability and pH Sensitivity in TRPM6 and TRPM7s. Journal of Biological Chemistry. 2007;282(35):25817–25830.
  • 8. Bytyqi-Damoni A, Kestane A, Taslimi P, Tuzun B, Zengin M, Bilgicli HG, et al. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J Mol Struct. 2020;1202:1–12.
  • 9. Mastelic J, Jerkovic I, Blažević I, Poljak-Blaži M, Borović S, Ivančić-Baće I, et al. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J Agric Food Chem. 2008;56(11):3989–96.
  • 10. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol.2008 Sep;47(3):174–9.
  • 11. López-Mata MA, Ruiz-Cruz S, Silva-Beltrán NP, Ornelas-Paz JDJ, Zamudio-Flores PB, Burruel-Ibarra SE. Physicochemical, antimicrobial and antioxidant properties of chitosan films incorporated with carvacrol. Molecules. 2013;18(11):13735–53.
  • 12. de Carvalho FO, Silva ÉR, Gomes IA, Santana HSR, do Nascimento Santos D, de Oliveira Souza GP, et al. Anti‐inflammatory and antioxidant activity of carvacrol in the respiratory system: A systematic review and meta‐analysis. Phytotherapy Research. 2020;34(9):2214–29.
  • 13. Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, et al. Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium. 2009;45(3):300–9.
  • 14. Nazıroğlu M. A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis. 2022;37(3):711–28.
  • 15. Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener.2017;12(10):1–11.
  • 16. Öz A, Çelik Ö. The effects of neuronal cell differentiation on TRPM7, TRPM8 and TRPV1 channels in the model of Parkinson’s disease. Neurol Res. 2022;44(1):24–37.
  • 17. Alanazi R, Nakatogawa H, Wang H, Ji D, Luo Z, Feng BGZ ping, et al. Inhibition of TRPM7 with carvacrol suppresses glioblastoma functions in vivo. 2022;(March):1483–91.
  • 18. Abumaria N, Li W, Clarkson AN. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cellular and Molecular Life Sciences. 2019;76(17):3301–10. Available from: https://doi.org/10.1007/s00018-019-03124-2
  • 19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- dye binding. Anal Biochem. 1976;72(1–2):248–54.
  • 20. Yazğan Y, Nazıroğlu M. Involvement of TRPM2 in the Neurobiology of Experimental Migraine: Focus on Oxidative Stress and Apoptosis. Mol Neurobiol. 2021;58(11):5581–601.
  • 21. Öz A, Çelik Ö, Övey İS. Effects of different doses of curcumin on apoptosis, mitochondrial oxidative stress and calcium influx in DBTRG glioblastoma cells. Journal of Cellular Neuroscience and Oxidative Stress. 2017;9(2):617–29.
  • 22. Çiğ B, Yildizhan K. Resveratrol diminishes bisphenol A-induced oxidative stress through TRPM2 channel in the mouse kidney cortical collecting duct cells. Journal of Receptors and Signal Transduction. 2020;40(6):570–83.
  • 23. Övey İS, Nazıroğlu M. Effects of homocysteine and memantine on oxidative stress related TRP cation channels in in-vitro model of Alzheimer’s disease. Journal of Receptors and Signal Transduction. 2020;41(3):273–83.
  • 24. González D, Espino J, Bejarano I, López JJ, Rodríguez AB, Pariente JA. Caspase-3 and -9 are activated in human myeloid HL-60 cells by calcium signal. Mol Cell Biochem. 2010;333(1– 2):151–7.
  • 25. Dreos R, Ambrosini G, Périer RC, Bucher P. The Eukaryotic Promoter Database: expansion of EPDnew and new promoter analysis tools. Nucleic Acids Res. 2015 Jan;43:D92-6.
  • 26. Öz A. Experimental cell culture models for investigating neurodegenerative diseases. J Cell Neurosci Oxid Stress. 2019;11(2):835–51.
  • 27. Chen Y, Liu L, Xia L, Wu N, Wang Y, Li H, et al. TRPM7 silencing modulates glucose metabolic reprogramming to inhibit the growth of ovarian cancer by enhancing AMPK activation to promote HIF-1α degradation. Journal of Experimental and Clinical Cancer Research. 2022;41(1):1–19.
  • 28. Römmelt C, Munsch T, Drynda A, Lessmann V, Lohmann CH, Bertrand J. Periprosthetic hypoxia as consequence of TRPM7 mediated cobalt influx in osteoblasts. J Biomed Mater Res B Appl Biomater. 2019;107(6):1806–13.
  • 29. Ranjbar Taklimie F, Gasterich N, Scheld M, Weiskirchen R, Beyer C, Clarner T, et al. Hypoxia Induces Astrocyte-Derived Lipocalin-2 in Ischemic Stroke. Int J Mol Sci. 2019 Mar;20(6).
  • 30. Song S, Park JT, Na JY, Park MS, Lee JK, Lee MC, et al. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia. Neural Regen Res. 2014 May;9(9):912–8.
  • 31. Kung-Chun Chiu D, Pui-Wah Tse A, Law CT, Ming-Jing Xu I, Lee D, Chen M, et al. Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death Dis. 2019 Dec;10(12):934.
  • 32. Öz A, Uğuz AC. Migren patogenezinde oksidatif strese duyarlı TRP kanallarının rolleri. SDÜ Tıp Fakültesi Dergisi. 2016;22(4):144–50.
  • 33. Nazıroğlu M. A novel antagonist of TRPM2 and TRPV4 channels: Carvacrol. Metab Brain Dis. 2022;37(3):711–28. Available from: https://doi.org/10.1007/s11011-021-00887-1
  • 34. Sun HS, Horgen FD, Romo D, Hull KG, Kiledal SA, Fleig A, et al. Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead. Acta Pharmacol Sin. 2020;41(12):1519–24. Available from: http://dx.doi.org/10.1038/s41401-020-00512-4
  • 35. Slemc L, Kunej T. Transcription factor HIF1A: downstream targets, associated pathways, polymorphic hypoxia response element (HRE) sites, and initiative for standardization of reporting in scientific literature. Tumor Biology. 2016;37:14851–61.
  • 36. Coombes E, Jiang J, Chu XP, Inoue K, Seeds J, Branigan D, et al. Pathophysiologically relevant levels of hydrogen peroxide induce glutamate-independent neurodegeneration that involves activation of transient receptor potential melastatin 7 channels. Antioxid Redox Signal. 2011;14(10):1815–27.
  • 37. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science (1979). 2008;322(5902):756–60.
  • 38. Sun Y, Sukumaran P, Singh BB. Magnesium-Induced Cell Survival Is Dependent on TRPM7 Expression and Function. Mol Neurobiol. 2020;57(1):528–38.
  • 39. Turlova E, Ji D, Deurloo M, Wong R, Fleig A, Horgen FD, et al. Hypoxia-Induced Neurite Outgrowth Involves Regulation Through TRPM7. Mol Neurobiol. 2023;60(2):836–50. Available from: https://doi.org/10.1007/s12035-022-03114-9
  • 40. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. 2015;1–13.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Ahmi Öz 0000-0003-1881-8460

Publication Date September 23, 2023
Submission Date March 8, 2023
Acceptance Date July 5, 2023
Published in Issue Year 2023

Cite

Vancouver Öz A. HÜCRE KÜLTÜRÜ ORTAMINDA KARVAKROLÜN KOBALT KLORÜR İLE İNDÜKLENEN KİMYASAL HİPOKSİDEKİ KORUYUCU ROLÜ. Med J SDU. 2023;30(3):354-61.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.