Research Article
BibTex RIS Cite

Maksilla Posterior Bölgede Vertikal Kemik Miktarının Yetersizliği Durumunda Uygulanan Kısa İmplantların Üzerindeki Ve Etrafındaki Kuvvet Dağılımının Sonlu Elemanlar Analizi ile Değerlendirilmesi

Year 2018, Volume: 25 Issue: 4, 349 - 355, 01.12.2018
https://doi.org/10.17343/sdutfd.333523

Abstract

Amaç:
Bu çalışmanın
amacı; 3 boyutlu sonlu elemanlar analiz yöntemi ile posterior maksiller dişsiz
bölgeye uygulanan kısa dental implantların üzerinde ve çevresinde oluşan kuvvet
dağılımlarının incelenmesidir.

Yöntem:
Maksiller sinüs
pnömatizasyonu bulunan dişsiz posterior alana sahip sağlıklı bir bireyin
bilgisayarlı tomografi görüntüleri temel alınarak bir model oluşturuldu.
Ardından 6,5 mm uzunluğunda ve 4 mm çapında vida tipi silindirik implant modeli
oluşturuldu. Vertikal ve oblik kuvvetler simüle edilerek üç boyutlu sonlu
elemanlar stres analizi yöntemi ile implant üzerinde ve çevre kemik üzerinde oluşan
stresler değerlendirildi.

Bulgular:
Vertikal ve
oblik yükleme esnasında implant üzerinde oluşan streslerin değerlendirilimesi
için von Mises stresi sonuçları hem sayısal olarak hem de renklendirilmiş
görüntüler olarak kaydedilmiştir. Kortikal kemik ve kansellöz kemik üzerinde
belirlenen 4 bölge üzerinde oluşan von Mises stres, çekme stresi ve baskı
stresi sonuçları hem sayısal olarak hem de renklendirilmiş görüntüler olarak
değerlendirilmiştir. Buna göre; streslerin kansellöz kemiğe oranla kortikal kemikte
yoğun olduğu görülmüştür. Ayrıca, en yüksek kuvvetler implant içerisinde
oluştuğu ve dayanak-implant birleşimi yakınında, implantın kortikal kemik ile
komşuluk yaptığı bölge sınırında yoğunlaştığı görülmüştür.







Sonuç:
Çalışılan tüm
modellerde elde edilen stres değerlerinin yıkıcı sınırlara yaklaşmaması
sebebiyle, maksiller posterior dişsiz bölgede kısa implantların kullanımının
başarılı olabileceği öngörülmüştür. İmplantlara gelen oblik kuvvetlerin
oluşturduğu stresin daha yüksek değerlerde olduğu düşünülerek, özellikle kısa
implant yerleştirileceği zaman, implantların mümkün olduğunca okluzal
kuvvetlere paralel şekilde yerleştirilmesi biyomekanik açıdan önemlidir.

References

  • 1. Levi I, Halperin-Sternfeld DM, Horwitz J, Zigdon-giladi H, Machtei EE. Dimensional changes of the maxillary sinus following tooth extraction in the posterior maxilla with and without socket preservation. Clin Implant Dent Relat Res. 2017;4:Baskıda.
  • 2. Martuscelli R, Toti P, Sbordone L, Guidetti F, Ramaglia L, Sbordone C. Five-year outcome of bone remodelling around implants in the maxillary sinus: assessment of differences between implants placed in autogenous inlay bone blocks and in ungrafted maxilla. Int J Oral Maxillofac Surg. 2014;43(9):1117-1126.
  • 3. Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol. 2003;8(1):328-343.
  • 4. Pjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation: Part I: lateral approach. J Clin Periodontol. 2008;35(Suppl. 8):216-240.
  • 5. Ömezli MM, Ertaş Ü. Zigoma İmplantları. J Dent Fac Atatürk Uni. 2015;10(Supp.):190-195.
  • 6. Raja S V. Management of the Posterior Maxilla With Sinus Lift: Review of Techniques. J Oral Maxillofac Surg. 2009;67(8):1730-1734.
  • 7. Karthikeyan I, Desai SR, Singh R. Short implants: A systematic review. J Indian Soc Periodontol. 2012;16(3):302.
  • 8. Maló P, De Araújo Nobre M, Rangert B. Short Implants Placed One‐Stage in Maxillae and Mandibles: A Retrospective Clinical Study with 1 to 9 Years of Follow‐Up. Clin Implant Dent Relat Res. 2007;9(1):15-21.
  • 9. Hagi D, Deporter DA, Pilliar RM, Arenovich T. A Targeted Review of Study Outcomes With Short ( ≤ 7 mm) Endosseous Dental Implants Placed in Partially Edentulous Patients. J Periodontol. 2001;75(6):798-804.
  • 10. Pohl V, Id O, Thoma DS, et al. Short dental implants (6 mm) versus long dental implants (11-15 mm) in combination with sinus floor elevation procedures: 3-year results from a multi-center, randomized, controlled clinical trial. J Clin Perio. 2017:0-2.
  • 11. Felice P, Cannizzaro G, Checchi V, et al. Vertical bone augmentation versus 7-mm-long implants in posterior atrophic mandibles . Results of a randomised controlled clinical trial of up to 4 months after loading. Eur J Oral Imp 2009;2(1):7-20.
  • 12. Morand M, Irinakis T. The Challenge Of Implant Therapy in the Posterior Maxilla: Providing a Rationale for the Use of Short Implants. J Oral Implantol. 2007;33(5):257-266.
  • 13. Thoma DS, Zeltner M, Hüsler J, Hämmerle CHF, Jung RE. EAO Supplement Working Group 4–EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review. Clin Oral Implants Res. 2015;26(S11):154-169.
  • 14. Van Staden RC, Guan H, Loo Y-C. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin. 2006;9(4):257-270.
  • 15. Jain V, Shyagali TR, Kambalyal P, Rajpara Y, Doshi J. Comparison and evaluation of stresses generated by rapid maxillary expansion and the implant-supported rapid maxillary expansion on the craniofacial structures using finite element method of stress analysis. Prog Orthod. 2017;18(1):3.
  • 16. Fanuscu MI, Vu H V, Poncelet B. Implant Biomechanics in Grafted Sinus: A Finite Element Analysis. J Oral Implantol. 2004;30(2):59-68.
  • 17. Koca ÖL, Eskitaşcıoğlu G, Üşümez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent. 2005;93(1):38-44.
  • 18. Tepper G, Haas R, Zechner W, Krach W, Watzek G. Three‐dimensional finite element analysis of implant stability in the atrophic posterior maxilla. Clin Oral Implants Res. 2002;13(6):657-665.
  • 19. Zhao L, Ph D, Herman JE, Patel PK. The structural ımplications of a unilateral facial skeletal cleft : a three-dimensional finite element model approach. Cleft Palate Craniofac J. 2008;45(2):121-130.
  • 20. Ozcelik TB, Ersoy E, Yilmaz B. Biomechanical evaluation of tooth- and ımplant-supported fixed dental prostheses with various nonrigid connector positions : a finite element analysis. J Prosthodont. 2011;20:16-28.
  • 21. Weinberg LA, Kruger B. A comparison of implant/prosthesis loading with four clinical variables. Int J Prosthodont. 1995;8(5).
  • 22. Oh I, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater. 2003;49(1):1197-1202.
  • 23. Nagaraja S, Couse TL, Guldberg RE. Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech. 2005;38(4):707-716.
  • 24. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating Parameters of Osseointegrated Dental Implants Using Finite element Analysis - A Two-Dimensional Comparative Study Examing the Effects of Implant Diameter, Implant Shape, and Load Direction. J Oral Implantol. 1998;24(2):80-88.
  • 25. Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants : A finite element analysis. J Prosthet Dent. 2017:1-9.
  • 26. de Souza Batista VE, Verri FR, de Faria Almeida DA, Junior JFS, Lemos CAA, Pellizzer EP. Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent. 2017.

Evaluation of Stress Distribution with Finite Element Analysis on and around Short Implants in Case of Inadequate Vertical Bone Quantity in Maxilla Posterior Region

Year 2018, Volume: 25 Issue: 4, 349 - 355, 01.12.2018
https://doi.org/10.17343/sdutfd.333523

Abstract

Purpose: The aim of this study was to
evaluate the stress distribution on the short implant and surrounding bone that
was applied to posterior maxillary edentulous region.

Methods: The model was defined
according to a computed tomography images of a healthy patient’s posterior
edentulous region with maxillary sinus pneumatization. Then, 6.5mm length and
4mm diameter cylindrical titanium implant was modeled. Vertical and oblique forces  were simulated and evaluated with
three-dimensionally finite element analysis method.

Results: For evaluating the stresses
on the implant during vertical and oblique loading, von Mises stress results
were recorded both numerically and as colored images. Von Mises stress,
compressive stress and tensile stress on the four regions determined on cortical
bone and cancellous bone were evaluated with numerical and colored images.
According to results; stresses were found to be high in the cortical bone
compared to the cancellous bone. Also, the highest stress was found on the
implant body, and the stress were high at near the abutment-implant junction,
region of the implant adjacent to the cortical bone.







Conclusion:   It
is predicted that the use of short implants in maxillary posterior region could
be appropriate because the obtained stress values in all models were not high
as the destructive limits. Taking into account that the stress on the implants
generated by the oblique forces is higher, for especially short implant
placement, it is important biomechanically that the implants should be placed
as possible as parallel to the occlusal forces.

References

  • 1. Levi I, Halperin-Sternfeld DM, Horwitz J, Zigdon-giladi H, Machtei EE. Dimensional changes of the maxillary sinus following tooth extraction in the posterior maxilla with and without socket preservation. Clin Implant Dent Relat Res. 2017;4:Baskıda.
  • 2. Martuscelli R, Toti P, Sbordone L, Guidetti F, Ramaglia L, Sbordone C. Five-year outcome of bone remodelling around implants in the maxillary sinus: assessment of differences between implants placed in autogenous inlay bone blocks and in ungrafted maxilla. Int J Oral Maxillofac Surg. 2014;43(9):1117-1126.
  • 3. Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol. 2003;8(1):328-343.
  • 4. Pjetursson BE, Tan WC, Zwahlen M, Lang NP. A systematic review of the success of sinus floor elevation and survival of implants inserted in combination with sinus floor elevation: Part I: lateral approach. J Clin Periodontol. 2008;35(Suppl. 8):216-240.
  • 5. Ömezli MM, Ertaş Ü. Zigoma İmplantları. J Dent Fac Atatürk Uni. 2015;10(Supp.):190-195.
  • 6. Raja S V. Management of the Posterior Maxilla With Sinus Lift: Review of Techniques. J Oral Maxillofac Surg. 2009;67(8):1730-1734.
  • 7. Karthikeyan I, Desai SR, Singh R. Short implants: A systematic review. J Indian Soc Periodontol. 2012;16(3):302.
  • 8. Maló P, De Araújo Nobre M, Rangert B. Short Implants Placed One‐Stage in Maxillae and Mandibles: A Retrospective Clinical Study with 1 to 9 Years of Follow‐Up. Clin Implant Dent Relat Res. 2007;9(1):15-21.
  • 9. Hagi D, Deporter DA, Pilliar RM, Arenovich T. A Targeted Review of Study Outcomes With Short ( ≤ 7 mm) Endosseous Dental Implants Placed in Partially Edentulous Patients. J Periodontol. 2001;75(6):798-804.
  • 10. Pohl V, Id O, Thoma DS, et al. Short dental implants (6 mm) versus long dental implants (11-15 mm) in combination with sinus floor elevation procedures: 3-year results from a multi-center, randomized, controlled clinical trial. J Clin Perio. 2017:0-2.
  • 11. Felice P, Cannizzaro G, Checchi V, et al. Vertical bone augmentation versus 7-mm-long implants in posterior atrophic mandibles . Results of a randomised controlled clinical trial of up to 4 months after loading. Eur J Oral Imp 2009;2(1):7-20.
  • 12. Morand M, Irinakis T. The Challenge Of Implant Therapy in the Posterior Maxilla: Providing a Rationale for the Use of Short Implants. J Oral Implantol. 2007;33(5):257-266.
  • 13. Thoma DS, Zeltner M, Hüsler J, Hämmerle CHF, Jung RE. EAO Supplement Working Group 4–EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review. Clin Oral Implants Res. 2015;26(S11):154-169.
  • 14. Van Staden RC, Guan H, Loo Y-C. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin. 2006;9(4):257-270.
  • 15. Jain V, Shyagali TR, Kambalyal P, Rajpara Y, Doshi J. Comparison and evaluation of stresses generated by rapid maxillary expansion and the implant-supported rapid maxillary expansion on the craniofacial structures using finite element method of stress analysis. Prog Orthod. 2017;18(1):3.
  • 16. Fanuscu MI, Vu H V, Poncelet B. Implant Biomechanics in Grafted Sinus: A Finite Element Analysis. J Oral Implantol. 2004;30(2):59-68.
  • 17. Koca ÖL, Eskitaşcıoğlu G, Üşümez A. Three-dimensional finite-element analysis of functional stresses in different bone locations produced by implants placed in the maxillary posterior region of the sinus floor. J Prosthet Dent. 2005;93(1):38-44.
  • 18. Tepper G, Haas R, Zechner W, Krach W, Watzek G. Three‐dimensional finite element analysis of implant stability in the atrophic posterior maxilla. Clin Oral Implants Res. 2002;13(6):657-665.
  • 19. Zhao L, Ph D, Herman JE, Patel PK. The structural ımplications of a unilateral facial skeletal cleft : a three-dimensional finite element model approach. Cleft Palate Craniofac J. 2008;45(2):121-130.
  • 20. Ozcelik TB, Ersoy E, Yilmaz B. Biomechanical evaluation of tooth- and ımplant-supported fixed dental prostheses with various nonrigid connector positions : a finite element analysis. J Prosthodont. 2011;20:16-28.
  • 21. Weinberg LA, Kruger B. A comparison of implant/prosthesis loading with four clinical variables. Int J Prosthodont. 1995;8(5).
  • 22. Oh I, Nomura N, Masahashi N, Hanada S. Mechanical properties of porous titanium compacts prepared by powder sintering. Scr Mater. 2003;49(1):1197-1202.
  • 23. Nagaraja S, Couse TL, Guldberg RE. Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech. 2005;38(4):707-716.
  • 24. Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating Parameters of Osseointegrated Dental Implants Using Finite element Analysis - A Two-Dimensional Comparative Study Examing the Effects of Implant Diameter, Implant Shape, and Load Direction. J Oral Implantol. 1998;24(2):80-88.
  • 25. Cinel S, Celik E, Sagirkaya E, Sahin O. Experimental evaluation of stress distribution with narrow diameter implants : A finite element analysis. J Prosthet Dent. 2017:1-9.
  • 26. de Souza Batista VE, Verri FR, de Faria Almeida DA, Junior JFS, Lemos CAA, Pellizzer EP. Evaluation of the effect of an offset implant configuration in the posterior maxilla with external hexagon implant platform: A 3-dimensional finite element analysis. J Prosthet Dent. 2017.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Adnan Kılınç

Mert Ataol

Nesrin Saruhan

Mustafa Gündoğdu This is me

Publication Date December 1, 2018
Submission Date August 8, 2017
Acceptance Date September 21, 2017
Published in Issue Year 2018 Volume: 25 Issue: 4

Cite

Vancouver Kılınç A, Ataol M, Saruhan N, Gündoğdu M. Maksilla Posterior Bölgede Vertikal Kemik Miktarının Yetersizliği Durumunda Uygulanan Kısa İmplantların Üzerindeki Ve Etrafındaki Kuvvet Dağılımının Sonlu Elemanlar Analizi ile Değerlendirilmesi. Med J SDU. 2018;25(4):349-55.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.