Yıl 2018, Cilt 25 , Sayı 4, Sayfalar 487 - 497 2018-12-01

Biological and Functional Properties of Possible Prebiotic Properties of Exopolysaccharides (EPSs) from Probiotics
Probiyotik Kaynaklı, Muhtemel Prebiyotik Özelliğe Sahip Ekzopolisakkarit (EPS)’ lerin Biyolojik ve Fonksiyonel Özellikleri

Ümmügülsüm TÜKENMEZ [1] , Belma ASLIM [2]

Nowadays, cancer is one of the most important health problems and is one of the diseases that causes the most deaths in the world. Existing anti-cancer drugs used in cancer treatment show toxicity dose dependent manner and cause strong side effects (infection, hair loss, fatigue, lip sores, nausea, vomiting, diarrhea and bloody feces). Therefore, there is a need to develop anti-cancer agents that are effective and less toxic in the cancer treatment. Exopolysaccharides (EPSs) obtained from safe and natural sources, such as lactic acid bacteria (LAB), are thought to be a good alternative to synthetic anti-cancer agents. The usefulness of the various EPSs is due to the fact that the EPS is dependent on the monosaccharide composition, the ties of the bonds, the branching degrees and the molecular weight, this review contains information on the structure and biological activity of EPSs and the mechanism of anti-cancer action of EPSs.

Kanser, günümüzün en önemli sağlık sorunlarından birisidir ve dünyada en çok ölüme neden olan hastalıklardan biridir. Kanser tedavisinde kullanılan mevcut anti-kanser ilaçlar doza bağlı olarak toksisite göstermekte ve güçlü yan etkilere (enfeksiyon, saç dökülmesi, yorgunluk, dudak yaraları, mide bulantısı, kusma, diyare ve kanlı dışkılar) neden olmaktadır.  Dolayısıyla kanserin tedavisinde etkili ve daha az toksik olan anti-kaser ajanların geliştirilmesine ihtiyaç duyulmaktadır.  Laktik asit bakterileri (LAB) gibi güvenilir ve doğal kaynaklardan elde edilen ekzopolisakkarit (EPS)’lerin, sentetik anti-kanser ajanlarına göre iyi bir alternatif olabileceği düşünülmektedir. Çeşitli EPS’lerin yararlılığı EPS’nin monosakkarit kompozisyonuna, bağların türüne, dallanma derecelerine ve molekül ağırlığına bağlı olduğu için bu derleme EPS’lerin yapısı ve biyolojik aktivitesi ve EPS’lerin anti-kanser etkileri ile ilgili bilgiler içermektedir.


  • 1. Zandi K, Tajbakhsh S, Nabipour I, Rastian Z, Yousefi F, Sharafian S, Sartavi K. In vitro antitumor activity of Gracilaria corticata (a red alga) against jurkat and molt-4 human cancer cell lines. Afr J Biotechnol 2010; 9: 6787-6790.
  • 2. Kanchana A, Balakrishna M. Anti-cancer effect of saponins isolated from solanum trilobatum leaf extract and induction of apoptosis in human larynx cancer cell lines. Int J Pharm Pharm Sci 2011; 3: 356-364.
  • 3. Hemamalini K, Soujanya GL, Bhargav A, Vasireddy U. In-vivo anticancer activity of Tabebuia rosea (bertol) dc. leaves on Dalton’s ascetic lymphoma in mice. Int J Pharm Sci Res 2012; 3: 4496-4502.
  • 4. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun M. Cancer stat, 2006. CA Cancer J Clin 2006; 56: 106-130.
  • 5. Adamsen L, Quist M, Midtgaard J, Andersen C, Moller T, Knutsen L, Tveteras A, Rorth M. The effect of a multidimensional exercise intervention on physical capacity, well-being and quality of life in cancer patients undergoing chemotherapy. Support Care Cancer 2006, 14, 116−127.
  • 6. Wagner AD, Grothe W, Haerting J, Kleber G, Grothey A, Fleig WE. Chemotherapy in advanced gastric cancer: A systematic review and meta-analysis based on aggregate data. J Clin Oncol 2006; 24, 2903−2909.
  • 7. Abd El Ghany K, Hamouda R, Abd Elhafez E, Mahrous H, Salem-Bekhit M, Hamza HA. A potential role of Lactobacillus acidophilus LA1 and its exopolysaccharides on cancer cells in male albino mice. Biotechnol Biotechnol Equip 2015; 29 (5): 977-983.
  • 8. Li W, Xia X, Tang W, Ji J, Rui X, Chen X, Jiang M, Zhou J, Zhang Q, Dong M. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. J Agric Food Chem 2015; 63 (13): 3454-3463.
  • 9. Salminen S, Bouley C, Boutron-Ruaultetal MC. Functional food science and gastrointestinal physiology and function. Br J Nutr 1998; 80 (1): 147–171.
  • 10. FAO/WHO. 2001. Reporton Joint FAO/WHO Expert Consultationon Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria.
  • 11. Hussein MDM, Ghaly MF, Osman MY, Al Shimaa GS, Helal MM. Production and prebiotic activity of exopolysaccharides derived from some probiotics. Egypt Pharmaceut J 2015; 14 (1): 1.
  • 12. Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee, Y., Kim, JK., Park, W., You, S. Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. Int J Biol Macromol 2014; 68: 233-240.
  • 13. Van Calsteren, MR, Pau-Roblot C, Bégin A, Roy D. Structure determination of the exopolysaccharide produced by Lactobacillus rhamnosus strains RW-9595M and R. Biochemical Journal 2002; 363: 7-17.
  • 14. Doleyres Y, Schaub L, a Lacroix C. Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J Dairy Sci 2005; 88: 4146-4156.
  • 15. Kim Y, Oh S, Yun HS, Kim SH. Cell‐bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 2010; 51 (2): 123-130.
  • 16. Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 2001; 64: 71–80.
  • 17. Whitfield C, Valvano MA. Biosynthesis and expression of cell-surfaces polysaccharides in gram-negative bacteria. Adv Microb Physiol 1993; 35: 135–146.
  • 18. Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 2011; 29: 388-398.
  • 19. Patel S, Majumder A, Goyal A. Potentials of Exopolysaccharides from Lactic Acid Bacteria. Indian J Microbiol 2012; 52: 3-12.
  • 20. Degeest B, Mozzi F, De Vuyst L. Effect of medium composition and temperature and pH changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int J Food Microbiol 2002; 79: 161-174.
  • 21. Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod 1997; 60: 52-60.
  • 22. Madhuri KV, Vidya Prabhakar K. Microbial exopolysaccharides: biosynthesis and potential applications. Oriental J Chem 2014; 30: 14011410.
  • 23. Ramana KV, Xavier JR., Sharma RK. Recent Trends in Pharmaceutical Biotechnology. Pharmaceutical Biotechnology: Current Research 2017; 1 (1): 5.
  • 24. Mende S, Rohm H, Jaros D. Unfluence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int Dairy J, 2016; 52: 57-71.
  • 25. Laws A, Gu Y, Marshall V. Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 2001; 19: 597–625.
  • 26. Kristo E, Miao Z, Corredig M. The role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris in structure formation and recovery of acid milk gels. Int Dairy J 2011; 21: 656–662.
  • 27. Yang Z, Li S, Zhang X, Zeng X, Li D, Zhao Y, Zhang J. Capsular and slime-polysaccharide production by Lactobacillus rhamnosus JAAS8 isolated from Chinese sauerkraut: Potential application in fermented milk products. J Biosci Bioeng 2010; 110: 53-57.
  • 28. Kleerebezem M, Hugenholtz J. Metabolic pathway engineering in lactic acid bacteria. Curr Opin Biotechnol 2003; 14: 232-237.
  • 29. Welman AD, Maddox S. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 2003; 21: 269-274.
  • 30. Kleerebezem M, Boels IC, Groot MN, Mierau I, Sybesma W, Hugenholtz J. Metabolic engineering of Lactococcus lactis: the impact of genomics and metabolic modelling. J Biotechnol 2002; 98: 199-213.
  • 31. Yang J, Zhang W, Shi P, Chen J, Han X, Wang Y. Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Prac 2005; 201: 745–750.
  • 32. Kitazawa H, Yamaguchi T, Fujimoto Y, Itoh T. An analysis of mitogenic response of phosphopolysaccharide, a B-cell mitogen produced by Lactococcus lactis ssp. cremoris to spleen cells. Animal Sci Technol 1993; 64: 807–812.
  • 33. Kitazawa H, Itoh T, Tomioka Y, Mizugaki M, Yamaguchi T. Induction of IFNγ and IL-1α production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int J Food Microbiol 1996; 31: 99–106.
  • 34. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002; 60: 258–274.
  • 35. Lin ZB, Zhang HN. Anti-tumor and immunoregulatory activities of Ganoderma lucidum and its possible mechanisms. Acta Pharmacol Sin 2004; 25: 1387–1395.
  • 36. Cleary JA, Kelly GE, Husband AJ. The effect of molecular weight and β-1,6-linkages on priming of macrophage function in mice by (1,3)-β-D-glucan. Immunol Cell Biol 1999; 77: 395–403.
  • 37. Mizuno T. The Extraction and Development of Antitumor-Active Polysaccharides from Medicinal Mushrooms in Japan. Int J Med Mushrooms 1999; 1: 105-119.
  • 38. Ismail B, Nampoothiri KM. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 2010; 192: 1049–1057.
  • 39. Brown GD, Gordon S. Immune recognition. A new receptor for β-glucans. Nature 2001; 413: 36–37.
  • 40. Taylor PR, Brown GD, Reid DM, Willment JA, Martinez Pomares L, Gordon S, Wong SY. The β-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 2002; 169: 3876–3882.
  • 41. Ismail B, Nampoothiri KM. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510. Biologia 2013; 68 (6): 1041-1047.
  • 42. Kim JU, Kim Y, Han KS, Oh S, Whang KY, Kim JN, Kim SH. Function of cell-bound and released exopolysaccharides produced by Lactobacillus rhamnosus ATCC 9595. J Microbiol Biotechnol 2006; 16: 939–945.
  • 43. Iliev I, Ivanova I, Ignatova C. Glucansucrases from lactic acid bacteria (LAB). Biotechnol Biotechnol Equipment 2006; 3: 15–20.
  • 44. Shao BM, Dai H, Xu W, Lin ZB, Gao XM. Immune receptors for polysaccharides from Ganoderma lucidum. Biochem Biophys Res Commun 2004; 323: 133–141.
  • 45. Vidhyalakshmi R, Vallinachiyar C. Apoptosis of human breast cancer cells (MCF-7) induced by polysaccharides produced by bacteria. J Cancer Sci Ther 2013; 5: 31-34.
  • 46. Li S, Xiong Q, Lai X, Li X, Wan M, Zhang J, Yan Y, Cao M, Lu L, Guan J, Zhang D, Lin Y. Molecular modification of polysaccharides and resulting bioactivities. Compr Rev Food Sci Food Saf 2016; 15 (2): 237-250.
  • 47. Sun L, Wang L, Zhou Y. Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydrate Polymers 2012; 87 (2): 1206-1210.
  • 48. Lai SL, Pan ZY, Li XF. Study on the degradability of chitosan under microwave irradiation. J. Shanxi Univ Sci Technol 2005; 23: 38–40.
  • 49. Hidalgo-Cantabrana C, López P, Gueimonde M, Clara G, Suárez A, Margolles A, Ruas-Madiedo, P. Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob Proteins 2012; 4 (4): 227-237.
  • 50. Ren L, Reynisson J, Perera C, Hemar Y. The physicochemical properties of a new class of anticancer fungal polysaccharides: A comparative study. Carbohydr Polym 2013; 97 (1): 177-187.
  • 51. Lee WY, Park Y, Ahn JK, Ka KH, Park SY. Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme Microb Technol 2007; 40: 249–254.
  • 52. Lung, M. Y., Huang, W. Z. 2011. “Production, purification and tumor necrosis factor-α (TNF-α) release capability of exopolysaccharide from Laetiporus sulphureus (Bulliard:Fries)”, Bondartsev & Singer in submerged cultures,”Process Biochemistry, 46 (2), 433–439.
  • 53. Schepetkin IA, Faulkner CL, Nelson-Overton LK, Wiley JA, Quinn MT. Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopolorum. Int Immunopharmacol 2005; 5: 1783-1799.
  • 54. Liu, J., Sun, Y., Yu, C., Liu, L. 2012. “Chemical structure of one low molecular weight and water-soluble polysaccharide (EFP-W1) from the roots of Euphorbia fischeriana”, Food Chem, 87, 1236-1240.
  • 55. Joseph S, Sabulal B, George V, Antony KR, Janardhanan KK. Antitumor and anti-inflammatory activities of polysaccharides isolated from Ganoderma lucidum. Acta pharmaceutica 2011; 61 (3): 335-342.
  • 56. Hong JH, Jung HK. Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. J Korean Soc Appl Biol Chem 2014; 57 (1): 105-112.
  • 57. Kimura Y, Sumiyoshi M, Suzuki T, Sakanaka M. Antitumor and antimetastatic activity of a novel water-soluble low molecular weight beta-1, 3D-glucan (branch beta-1,6) isolated from Aureobasidium pullulans 1A1 strain black yeast. Anticancer Res 2006; 26: 4131–4141.
  • 58. Leung MYK, Fung KP, Choy YM. The isolation and characterization of an immunomodulatory and antitumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology 1997; 35: 255−63.
  • 59. Krakowski L, Krzyzanowski J, Wrona Z, Siwicki AK. The effect of nonspecific immunostimulation of pregnant mares with 1,3/1,6 glucan and levamisole on the immunoglobulin levels in colostrums, selected indices of nonspecific cellular and humoral immunity in foals in neonatal and postnatal period. Vet Immunol Immnopathol 1999; 68: 1−11.
  • 60. Matsuzaki C, Hayakawa A, Matsumoto K, Katoh T, Yamamoto K, Hisa K. Exopolysaccharides Produced by Leuconostoc mesenteroides Strain NTM048 as an Immunostimulant To Enhance the Mucosal Barrier and Influence the Systemic Immune Response. J Agric Food Chem 2015; 63: 7009-7015.
  • 61. Zivkovic M, Miljkovic M, Ruas-Madiedo P, Strahinic I, Tolinacki M, Golic N, Kojik M. Exopolysaccharide production and ropy phenotype are determined by two gene clusters in putative probiotic strain Lactobacillus paraplantarum BGCG11. Appl Environ Microbiol 2015; 81: 1387-1396.
  • 62. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 1995; 108: 975-982.
  • 63. Baruah R, Das D, Goyal A. Heteropolysaccharides from Lactic Acid Bacteria: Current Trends and Applications. J Prob Health 2016; 4 (141): 2.
  • 64. Reddy SK, Pawlik TM, Zorzi D, Gleisner AL, Ribero D, Assumpcao L, Barbas AS, Abdalla EK, Choti MA, Vauthey JN, Ludwig KA, Mantyh CR, Morse MA, Clary BM. Simultaneous resections of colorectal cancer and synchronous liver metastases: a multi-institutional analysis. Ann Surg Oncol 2007; 14: 3481-3491.
  • 65. Hongpattarakere T, Cherntong N, Wichienchot S, Kolida S, Rastall RA. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr Polym 2012; 846-852.
  • 66. Grosu-Tudor SS, Zamfir M, Der Meulen RV, Falony G, De Vuyst L. Prebiotic potential of some exopolysaccharides produced by lactic acid bacteria. Roman Biotechnol Lett 2013; 18, 8666-8675.
  • 67. Wang J, Zhao X, Yang Y, Zhao A, Yang Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 2015a; 74: 119-126.
  • 68. Wang J, Zhao X, Tian Z, He C, Yang Y, Yang, Z. Isolation and Characterization of exopolysaccharide-producing Lactobacillus plantarum SKT109 from Tibet Kefir. Polish J Food Nutri Sci 2015b; 269-280.
  • 69. Dilna SV, Surya H, Aswathy RG, Varsha KK, Sakthikumar DN, Pandey A, Nampoothiri KM. Characterization of an exopolysaccharide with potential healthbenefit properties from a probiotic Lactobacillus plantarum RJF4. LWT Food Sci Technol 2015; 1179-1186.
  • 70. Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 2013; 54: 270-275.
  • 71. De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 1999; 23: 153-177.
  • 72. de Vries EG, Gietema JA, de Jong S. Tumor necrosis factorrelated apoptosis-inducing ligand pathway and its therapeutic implications. Clin Cancer Res 2006; 12: 2390-2393.
  • 73. Bucur, O, Ray S, Bucur MC, Almasan A. APO2 ligand/tumor necrosis factor-related apoptosis-inducing ligand in prostate cancer therapy. Front Biosci 2006; 11: 1549-1568.
  • 74. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495-516.
  • 75. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005; 5: 876-885.
  • 76. Kato I, Endo K, Yokokura T. Effects of oral administration of Lactobacillus casei on antitumor responses induced by tumor resection in mice. Int J Immunopharmacol 1994; 16: 29–36.
  • 77. Gozuacik D, Kimchi A. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 2004; 23: 2891– 2906.
  • 78. Kondo Y, Kondo S. Autophagy and cancer therapy. Autophagy 2006; 2 (2): 85–90.
  • 79. Di Marzio L, Russo FP, D’Alo S, Biordi L, Ulisse S, Amicosante G, De Simone C, Cifone MG. Apoptotic effects of selected strains of lactic acid bacteria on a human T leukemia cell line are associated with bacterial arginine deiminase and⁄or sphingomyelinase activities. Nutr Cancer 2001; 40: 185–196.
  • 80. Belury, MA. Inhibition of carcinogenesis by conjugated linoleic acid: potential mechanisms of action. J Nutr 2002; 132: 2995–2998.
  • 81. Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78⁄BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ 2008; 15: 1460–1471.
  • 82. Ding WX, Ni HM, Gao W, Hou YF, Melan MA, Chen X, Stolz DB, Shao ZM, Yin XM. Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J Biol Chem 2007; 282: 4702–4710.
  • 83. Lee YH, Chung MC, Lin Q, Boelsterli UA. Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2 (+⁄-) mice: twostage oxidative injury. Toxicol Appl Pharmacol 2008; 231: 43–51.
  • 84. Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y. Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 2004; 6: 1221–1228.
  • 85. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine, B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.
  • 86. Moretti L, Attia A, Kim KW, Lu B. Crosstalk between Bak⁄Bax and mTOR signaling regulates radiationinduced autophagy. Autophagy 2007; 3: 142–147.
Birincil Dil tr
Konular Tıp
Bölüm Derlemeler

Yazar: Ümmügülsüm TÜKENMEZ
Ülke: Turkey

Yazar: Belma ASLIM
Ülke: Turkey


Başvuru Tarihi : 12 Ekim 2017
Kabul Tarihi : 15 Şubat 2018
Yayımlanma Tarihi : 1 Aralık 2018

Vancouver Tükenmez Ü , Aslım B . Probiyotik Kaynaklı, Muhtemel Prebiyotik Özelliğe Sahip Ekzopolisakkarit (EPS)’ lerin Biyolojik ve Fonksiyonel Özellikleri. SDÜ Tıp Fakültesi Dergisi. 2018; 25(4): 487-497.