Research Article
BibTex RIS Cite

THE EFFECTS OF IMMOBILIZATION STRESS ON PLACENTA AND FETUS IN PREGNANT MICE

Year 2021, Volume: 28 Issue: 1, 31 - 39, 11.03.2021
https://doi.org/10.17343/sdutfd.651091

Abstract

ABSTRACT

 

AIM: Stress can affect negatively mother and fetuses during
pregnancy. We aimed to investigate the effects of chronic immobilization stress
on placental maturation and fetal development.

MATERİALS AND METHODS: Balb/c virgin female mice (20-30 g)
were mated with male mice in a 2 to 1 female to male ratio. Pregnant mice in
control group (n=6) were left undisturbed, whereas pregnant mice in the stress
group (n=6) were exposed to 45 min chronic immobilization stress for three
times/day starting from gestational day 6 till 18. Fetuses and placentas were
removed from dams on the gestational day 18 under anesthesia.

RESULTS: The prenatal stress significantly
increased apoptosis in several placental cells including trophoblastic giant
cells, glycogen cells and labyrinth trophoblastic cells and resulted in
intrauterine growth restriction. The stress caused a decreased superoxide
dismutase and glutathione levels. Alizarin Red S staining shows the
ossification center of the fetuses to see developmental abnormality.











CONCLUSION: Gestational stress causes placental
dysfunctions by triggering apoptosis, reducing the labyrinth zone as well as
increasing collagen levels, which may impair fetal development that may
contribute to pathogenesis of intrauterine growth restriction.

Supporting Institution

DEU Scientific Research Projects Department Directorate

Project Number

2012.SAG.BİL.073

References

  • Referans1) Watson ED, Cross JC. Development of structures and transport functions in the mouse placenta, Physiology (Bethesda). 2005 Jun;20:180-93.
  • Referans2) Jefferey MR, Yasuhiro Y, Monika AW, Abby CC. Placental inflammation and oxidative stress in the mouse model of assisted reproduction, Placenta. 2011 Nov; 32(11): 852–858. Published online 2011 Sep 1. doi: 10.1016/j.placenta.2011.08.003
  • Referans3) Herman, J.P., Mcklveen J.M., Ghosal S. et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response, Compr. Physiol. 6 (2016) 603–621. doi:10.1002/cphy.c150015.
  • Referans4) Harris R.B.S., Chronic and acute effects of stress on energy balance: are there appropriate animal models?, Am. J. Physiol. - Regul. Integr. Comp. Physiol. 308 (2015) R250–R265. doi:10.1152/ajpregu.00361.2014
  • Referans5) Perkinsa G., Bossy-Wetzelb E., Ellisman M.H., New Insights into Mitochondrial Structure during Cell Death, Exp. Neurol. 218 (2010) 183–192. doi:10.1016/j.expneurol.2009.05.021.
  • Referans6) Straszewski-Chavez S.L., Abrahams V.M., Mor G., The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy, Endocr. Rev. 26 (2005) 877–897. doi:10.1210/er.2005-0003.
  • Referans7) Uckan D., Steele A., Cherry et al. Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion., Mol. Hum. Reprod. 3 (1997) 655–662. doi:10.1093/molehr/3.8.655.
  • Referans8) Huppertz B., Frank H.G., Kingdom J.C.P., Reister F., Kaufmann P., Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta, Histochem. Cell Biol. 110 (1998) 495–508. doi:10.1007/s004180050311.
  • Referans9) Demir R., İnsan plasentasında ışık mikroskobu, tarayıcı elektron mikroskobu bulguları ve ikizlerde perfüzyon incelemeleri, 1978.
  • Referans10) Burtis C.A., Ashwood E.R., Tietz textbook of clinical chemistry, W.B. Saunders Company, Pennsylvania, 1994
  • Referans11) Benirschke K., The placenta in the litigation process, Am. J. Obstet. Gynecol. 162 (1990) 1445–1450. doi:10.1016/0002-9378(90)90904-L.
  • Referans12) Benirschke K., Kaufmann P., Baergen R.N., Abortion, placentas of trisomies, and immunologic considerations of recurrent reproductive failure, in: Pathol. Hum. Placenta, 2006: pp. 762–796.
  • Referans13) Kaufmann P., Demonstration os cytoplasmic polyps from the human trophoblast by scanning electron microscopy, Arch. Gynakol. 211 (1970) 523.
  • Referans14) Schulze B., Schlesinger C., Miller K., Chromosomal mosaicism confined to chorionic tissue, Prenat. Diagn. 7 (1987) 451–453. doi:10.1016/j.ajpath.2011.02.031.
  • Referans15) Demir R., Demir A.Y, Yinanc M., Structural changes in placental barrier of smoking mother a quantitative and ulstrastructural study, Pathol. - Res. Pract. 190 (1994) 656–667. doi:10.1016/S0344-0338(11)80744-2.
  • Referans16) Rassoulzadegan M., Rosen B.S., Gillot I., Cuzin F., Phagocytosis reveals a reversible differentiated state early in the development of the mouse embryo., EMBO J. 19 (2000) 3295–3303. doi:10.1093/emboj/19.13.3295.
  • Referans17) El-Hashash A.H.K., Warburton D., Kimber S.J., Genes and signals regulating murine trophoblast cell development, Mech Dev. 127 (2010) 1–20. doi:10.1007/s11103-011-9767-z.Plastid.
  • Referans18) Chakraborty D., Rumi M.A.K., Soares M.J., NK cells, hypoxia and trophoblast cell differentiation, Cell Cycle. 11 (2012) 2427–2430. doi:10.4161/cc.20542.
  • Referans19) Nadeau V., Bissonauth V., Charron J., Le rôle des kinases Mek1 et Mek2 dans la formation de la barrière hématoplacentaire chez la souris, (2012).
  • Referans20) Girardin F., Membrane transporter proteins: A challenge for CNS drug development, Dialogues Clin. Neurosci. 8 (2006) 311–321. doi:10.1016/0266-7681(94)90280-1.
  • Referans21) Wataganara T., Bianchi D.W., Fetal cell-free nucleic acids in the maternal circulation: New clinical applications, Ann. N. Y. Acad. Sci. 1022 (2004) 90–99. doi:10.1196/annals.1318.015.
  • Referans22) Gavrieli Y., Sherman Y., Ben-Sasson S.A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell Biol. 119 (1992) 493–501. doi:10.1083/jcb.119.3.493.
  • Referans23) D’mello A.P., Liu Y., Effects of maternal immobilization stress on birth weight and glucose homeostasis in the offspring, Psychoneuroendocrinology. 31 (2006) 395–406. doi:10.1016/j.psyneuen.2005.10.003.
  • Referans24) Molehin D., Dekker Nitert M., Richard K., Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism, J. Thyroid Res. 2016 (2016). doi:10.1155/2016/8765049.
  • Referans25) Mairesse J., Lesage J., Breton C., et al. Maternal stress alters endocrine function of the feto-placental unit in rats, AJP Endocrinol. Metab. 292 (2007) E1526–E1533. doi:10.1152/ajpendo.00574.2006.
  • Referans26) Morrison J.L., Sheep models of intrauterine growth restriction: Fetal adaptations and consequences, Clin. Exp. Pharmacol. Physiol. 35 (2008) 730–743. doi:10.1111/j.1440-1681.2008.04975.x.
  • Referans27) Jang E.A., Longo L.D., Goyal R., Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents., Front. Physiol. 6 (2015) 176. doi:10.3389/fphys.2015.00176.
  • Referans28) Dimasuay K.G., Boeuf P., Powell T.L., Jansson T., Placental responses to changes in the maternal environment determine fetal growth, Front. Physiol. 7 (2016) 1–9. doi:10.3389/fphys.2016.00012.
  • Referans29) Gundogan F., Elwood G., Mark P., Feijoo A., Longato L., Ethanol-induced oxidative stress and mitochondrial dysfunction in rat placenta: Relevance to Pregnancy Loss, Alcohol. Clin. Exp. Res. 34 (2010) 415–423. doi:10.1111/j.1530-0277.2009.01106.x.Ethanol-Induced.
  • Referans30) Neale D.M., Mor G., The role of Fas mediated apoptosis in preeclampsia, J. Perinat. Med. 33 (2005) 471–477. doi:10.1515/JPM.2005.085.
  • Referans31) Yasemin Aksoy, The Role Of Glutathıone In Antıoxıdant Mechanısm, Turkiye Klinikleri J Med Sci. 2002;22(4):442-8.
  • Referans32) Murat Baflar, Mehmet Türker, Tülay İrez, Oktay Arda, Süperovulasyon Protokolünde Kullanılan GnRH Agonistinin Oosit Olgunluğu ve Çapına Etkileri, Cerrahpaşa Tıp Dergisi 2008; 39(2): 41-48 ISSN: 1300-5227.
  • Referans33) Erica D. Watson, James C. Cross, Development of Structures and Transport Functions in the Mouse Placenta, Physiology (Bethesda). 2005 Jun;20:180-93.

FARE GEBELİK DÖNEMİNDE HAREKETSİZLİK STRESİNİN PLASENTA VE YAVRUYA ETKİLERİ

Year 2021, Volume: 28 Issue: 1, 31 - 39, 11.03.2021
https://doi.org/10.17343/sdutfd.651091

Abstract

ÖZ



 



AMAÇ: Stres gebelik sürecinde anne ve
fetüs sağlığını olumsuz etkilemektedir. Çalışmamızda kronik hareketsizlik
stresinin plasenta ve fetüs gelişimi üzerine etkilerini araştırmayı hedefledik.



GEREÇ VE YÖNTEMLER: Balb/c
suşu dişi fareler (20-30gr), 2dişi-1erkek olacak şekilde katıma alındı. Kontrol
grubundaki (n=6) gebe farelere herhangi bir uygulama yapılmazken, stres
grubundaki (n=6) gebe farelere gebeliğin 6.gününden 18.gününe kadar günde 3
defa 45dakikalık kronik hareketsizlik stresine maruz bırakıldı. Gebeliğinin 18.
Gününde plasenta ve fetüsler anestezi altında sezaryen ile alındı.



BULGULAR: Prenatal
stres, trofoblastik dev hücreler, glikojen içeren hücreler ve labirent
trofoblastik hücreler dahil olmak üzere birçok plasental hücrede apoptozu
önemli ölçüde arttırdı ve intrauterin büyüme geriliğine sebep oldu. Stres
süperoksit dismutaz ve glutatyon seviyelerini azalttı. Fetüsün gelişimini
değerlendirmek için, Alizarin Red S boyaması ile fetüsün kemikleşme merkezleri değerlendirildi.



SONUÇ: Gebelik sürecindeki stres,
apoptozu tetikleyerek, labirent bölgesi küçüldü ve plasenta yetmezliğine sebep
oldu, ayrıca kollajen seviyelerini arttırarak fetüs gelişimini olumsuz yönde
etkileyerek intrauterin büyüme geriliği patogenezinde katkısı olduğunu
gözlemledik.

Project Number

2012.SAG.BİL.073

References

  • Referans1) Watson ED, Cross JC. Development of structures and transport functions in the mouse placenta, Physiology (Bethesda). 2005 Jun;20:180-93.
  • Referans2) Jefferey MR, Yasuhiro Y, Monika AW, Abby CC. Placental inflammation and oxidative stress in the mouse model of assisted reproduction, Placenta. 2011 Nov; 32(11): 852–858. Published online 2011 Sep 1. doi: 10.1016/j.placenta.2011.08.003
  • Referans3) Herman, J.P., Mcklveen J.M., Ghosal S. et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response, Compr. Physiol. 6 (2016) 603–621. doi:10.1002/cphy.c150015.
  • Referans4) Harris R.B.S., Chronic and acute effects of stress on energy balance: are there appropriate animal models?, Am. J. Physiol. - Regul. Integr. Comp. Physiol. 308 (2015) R250–R265. doi:10.1152/ajpregu.00361.2014
  • Referans5) Perkinsa G., Bossy-Wetzelb E., Ellisman M.H., New Insights into Mitochondrial Structure during Cell Death, Exp. Neurol. 218 (2010) 183–192. doi:10.1016/j.expneurol.2009.05.021.
  • Referans6) Straszewski-Chavez S.L., Abrahams V.M., Mor G., The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy, Endocr. Rev. 26 (2005) 877–897. doi:10.1210/er.2005-0003.
  • Referans7) Uckan D., Steele A., Cherry et al. Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion., Mol. Hum. Reprod. 3 (1997) 655–662. doi:10.1093/molehr/3.8.655.
  • Referans8) Huppertz B., Frank H.G., Kingdom J.C.P., Reister F., Kaufmann P., Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta, Histochem. Cell Biol. 110 (1998) 495–508. doi:10.1007/s004180050311.
  • Referans9) Demir R., İnsan plasentasında ışık mikroskobu, tarayıcı elektron mikroskobu bulguları ve ikizlerde perfüzyon incelemeleri, 1978.
  • Referans10) Burtis C.A., Ashwood E.R., Tietz textbook of clinical chemistry, W.B. Saunders Company, Pennsylvania, 1994
  • Referans11) Benirschke K., The placenta in the litigation process, Am. J. Obstet. Gynecol. 162 (1990) 1445–1450. doi:10.1016/0002-9378(90)90904-L.
  • Referans12) Benirschke K., Kaufmann P., Baergen R.N., Abortion, placentas of trisomies, and immunologic considerations of recurrent reproductive failure, in: Pathol. Hum. Placenta, 2006: pp. 762–796.
  • Referans13) Kaufmann P., Demonstration os cytoplasmic polyps from the human trophoblast by scanning electron microscopy, Arch. Gynakol. 211 (1970) 523.
  • Referans14) Schulze B., Schlesinger C., Miller K., Chromosomal mosaicism confined to chorionic tissue, Prenat. Diagn. 7 (1987) 451–453. doi:10.1016/j.ajpath.2011.02.031.
  • Referans15) Demir R., Demir A.Y, Yinanc M., Structural changes in placental barrier of smoking mother a quantitative and ulstrastructural study, Pathol. - Res. Pract. 190 (1994) 656–667. doi:10.1016/S0344-0338(11)80744-2.
  • Referans16) Rassoulzadegan M., Rosen B.S., Gillot I., Cuzin F., Phagocytosis reveals a reversible differentiated state early in the development of the mouse embryo., EMBO J. 19 (2000) 3295–3303. doi:10.1093/emboj/19.13.3295.
  • Referans17) El-Hashash A.H.K., Warburton D., Kimber S.J., Genes and signals regulating murine trophoblast cell development, Mech Dev. 127 (2010) 1–20. doi:10.1007/s11103-011-9767-z.Plastid.
  • Referans18) Chakraborty D., Rumi M.A.K., Soares M.J., NK cells, hypoxia and trophoblast cell differentiation, Cell Cycle. 11 (2012) 2427–2430. doi:10.4161/cc.20542.
  • Referans19) Nadeau V., Bissonauth V., Charron J., Le rôle des kinases Mek1 et Mek2 dans la formation de la barrière hématoplacentaire chez la souris, (2012).
  • Referans20) Girardin F., Membrane transporter proteins: A challenge for CNS drug development, Dialogues Clin. Neurosci. 8 (2006) 311–321. doi:10.1016/0266-7681(94)90280-1.
  • Referans21) Wataganara T., Bianchi D.W., Fetal cell-free nucleic acids in the maternal circulation: New clinical applications, Ann. N. Y. Acad. Sci. 1022 (2004) 90–99. doi:10.1196/annals.1318.015.
  • Referans22) Gavrieli Y., Sherman Y., Ben-Sasson S.A., Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation, J. Cell Biol. 119 (1992) 493–501. doi:10.1083/jcb.119.3.493.
  • Referans23) D’mello A.P., Liu Y., Effects of maternal immobilization stress on birth weight and glucose homeostasis in the offspring, Psychoneuroendocrinology. 31 (2006) 395–406. doi:10.1016/j.psyneuen.2005.10.003.
  • Referans24) Molehin D., Dekker Nitert M., Richard K., Prenatal Exposures to Multiple Thyroid Hormone Disruptors: Effects on Glucose and Lipid Metabolism, J. Thyroid Res. 2016 (2016). doi:10.1155/2016/8765049.
  • Referans25) Mairesse J., Lesage J., Breton C., et al. Maternal stress alters endocrine function of the feto-placental unit in rats, AJP Endocrinol. Metab. 292 (2007) E1526–E1533. doi:10.1152/ajpendo.00574.2006.
  • Referans26) Morrison J.L., Sheep models of intrauterine growth restriction: Fetal adaptations and consequences, Clin. Exp. Pharmacol. Physiol. 35 (2008) 730–743. doi:10.1111/j.1440-1681.2008.04975.x.
  • Referans27) Jang E.A., Longo L.D., Goyal R., Antenatal maternal hypoxia: criterion for fetal growth restriction in rodents., Front. Physiol. 6 (2015) 176. doi:10.3389/fphys.2015.00176.
  • Referans28) Dimasuay K.G., Boeuf P., Powell T.L., Jansson T., Placental responses to changes in the maternal environment determine fetal growth, Front. Physiol. 7 (2016) 1–9. doi:10.3389/fphys.2016.00012.
  • Referans29) Gundogan F., Elwood G., Mark P., Feijoo A., Longato L., Ethanol-induced oxidative stress and mitochondrial dysfunction in rat placenta: Relevance to Pregnancy Loss, Alcohol. Clin. Exp. Res. 34 (2010) 415–423. doi:10.1111/j.1530-0277.2009.01106.x.Ethanol-Induced.
  • Referans30) Neale D.M., Mor G., The role of Fas mediated apoptosis in preeclampsia, J. Perinat. Med. 33 (2005) 471–477. doi:10.1515/JPM.2005.085.
  • Referans31) Yasemin Aksoy, The Role Of Glutathıone In Antıoxıdant Mechanısm, Turkiye Klinikleri J Med Sci. 2002;22(4):442-8.
  • Referans32) Murat Baflar, Mehmet Türker, Tülay İrez, Oktay Arda, Süperovulasyon Protokolünde Kullanılan GnRH Agonistinin Oosit Olgunluğu ve Çapına Etkileri, Cerrahpaşa Tıp Dergisi 2008; 39(2): 41-48 ISSN: 1300-5227.
  • Referans33) Erica D. Watson, James C. Cross, Development of Structures and Transport Functions in the Mouse Placenta, Physiology (Bethesda). 2005 Jun;20:180-93.
There are 33 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Nihan Semerci This is me

Gökçen Bilici This is me 0000-0003-0027-9286

Filiz Yılmaz 0000-0003-0505-3905

Zahide Çavdar This is me 0000-0002-5457-198X

Uygar Sacık This is me 0000-0002-3154-8779

Ümit Kayışlı This is me

Guven Erbil This is me 0000-0002-8448-0691

Project Number 2012.SAG.BİL.073
Publication Date March 11, 2021
Submission Date November 26, 2019
Acceptance Date July 13, 2020
Published in Issue Year 2021 Volume: 28 Issue: 1

Cite

Vancouver Semerci N, Bilici G, Yılmaz F, Çavdar Z, Sacık U, Kayışlı Ü, Erbil G. THE EFFECTS OF IMMOBILIZATION STRESS ON PLACENTA AND FETUS IN PREGNANT MICE. Med J SDU. 2021;28(1):31-9.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.