Research Article
BibTex RIS Cite

INVESTIGATION OF THE PROTECTIVE EFFECT OF OMEGA-3 FATTY ACIDS ON MONOSODIUM GLUTAMATE-INDUCED HIPPOCAMPAL INJURY

Year 2024, Volume: 31 Issue: 1, 21 - 29, 18.03.2024
https://doi.org/10.17343/sdutfd.1292144

Abstract

Objective
Monosodium glutamate (MSG) is a flavor enhancer
that is added to many ready-to-eat foods and is known
to be excitotoxic to neurons in the brain. The aim of
the study is to investigate immunohistochemically
the neural damage that occurs in the neurons in
the hippocampus regions of childhood rats, despite
the protective effects of eicosapentaenoic acid
(EPA) against the possible toxic effects of MSG and
docosahexaenoic acid (DHA), which is effective in
brain development.
Material and Method
A total of 24 Wistar albino rats will be used as 6
females in childhood in each group.
Group 1: Control group (0.9 % saline solution
1.3.5.7.9. days subcutaneous (sc),
Group 2: MSG administered (4 mg/g 1.3.5.7.9. days
sc),
Group 3: MSG + EPA administered (4 mg/g 1.3.5.7.9.
days sc + 300 mg/kg 9 days orally),
Group 4: MSG + DHA applied (4 mg/g 1.3.5.7.9. days
sc + 300 mg/kg 9 days orally), at the end of the 9th
day, the brain tissues will be placed in 10% neutral
formalin for immunohistochemistry and TUNEL
technique application in the hippocampus CA1 region.
Results
When the hippocampus CA1 region of the brains of
childhood rats was examined, S100β immunoreactivity
showed a strong and significant reaction in the MSG
group compared to the other groups (p=0.000). It was
observed that the difference between MSG+EPA
and MSG+DHA groups was insignificant (p<0.05).
GFAP immunoreactivity also showed a strong and
significant reaction in the MSG group compared to
the other groups (p=0.000). It was observed that
the difference between MSG+EPA and MSG+DHA
groups was insignificant both in comparison with each
other and with the control group (p<0.05). In the MSG
group, TUNEL showed a strong positive reaction in
neuroglial cells. Expression was weak in the control
group. TUNEL staining reaction was weak in the
control group. A decrease in TUNEL staining reaction
was detected in hippocampal neurons in all areas in
the MSG-EPA and MSG-DHA groups. No significant
difference was observed in the TUNEL staining
reaction between MSG+EPA and both the control
group and the MSG+DHA groups (p>0.05).
Conclusion
While MSG caused an increase in the positive
expression of S100β, GFAP and TUNEL in the
hippocampus CA1 region of the brain, MSG-EPA
and MSG-DHA caused a decrease in neuronal
expression and apoptosis in hippocampal neurons.
Therefore, it was concluded that the use of MSG
together with Omega-3 fatty acids in childhood may
have a protective effect against neuroglial damage
and apoptosis.

References

  • 1. Schwartzkroin PA. Role of the hippocampus in epilepsy. Hippocampus. 1994;4(3):239-42.
  • 2. Kesner RP, Goodrich-Hunsaker NJ. Developing an animal model of human amnesia: the role of the hippocampus. Neuropsychologia. 2010;48(8):2290-302.
  • 3. Marlatt MW, Lucassen PJ. Neurogenesis and Alzheimer's disease: biology and pathophysiology in mice and men. Current Alzheimer Research. 2010;7(2):113-25.
  • 4. Zealand FSAN. Monosodium glutamate, a safety assessment. Technical report series no. 20. 2003.
  • 5. Yamaguchi S, Kimizuka A. Psychometric studies on the taste of monosodium. Glutamic acid: Advances in Biochemistry Physiology. 1979:35.
  • 6. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, et al. An amino-acid taste receptor. Nature. 2002;416(6877):199-202.
  • 7. Hashem HE, El-Din Safwat M, Algaidi S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). Journal of Molecular Histology. 2012;43:179-86.
  • 8. Gao J, Wu J, Zhao X, Zhang W, Zhang Y, Zhang Z. Transplacental neurotoxic effects of monosodium glutamate on structures and functions of specific brain areas of filial mice. Sheng Li Xue Bao:[Acta Physiologica Sinica]. 1994;46(1):44-51.
  • 9. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. The Journal of Nutrition. 2000;130(4):1007S-15S.
  • 10. Platt SR. The role of glutamate in central nervous system health and disease–a review. The Veterinary Journal. 2007;173(2):278-86.
  • 11. Luján R, Shigemoto R, López-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130(3):567-80.
  • 12. Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. Modulation of amyloid‐β‐induced and age‐associated changes in rat hippocampus by eicosapentaenoic acid. Journal of Neurochemistry. 2007;103(3):914-26.
  • 13. Li M, Zhu Q, Hu C, Giesy JP, Kong Z, Cui Y. Protective effects of eicosapentaenoic acid on genotoxicity and oxidative stress of cyclophosphamide in mice. Environmental Toxicology. 2011;26(3):217-23.
  • 14. Gamoh S, Hashimoto M, Sugioka K, Hossain MS, Hata N, Misawa Y, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience. 1999;93(1):237-41.
  • 15. Montgomery D. Astrocytes: form, functions, and roles in disease. Veterinary Pathology. 1994;31(2):145-67.
  • 16. Norenberg MD. Astrocyte responses to CNS injury. Journal of Neuropathology Experimental Neurology. 1994;53(3):213-20.
  • 17. Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microscopy Research Technique. 2003;60(6):614-32.
  • 18. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B's double life: intracellular regulator and extracellular signal. Biochimica et Biophysica Acta -Molecular Cell Research. 2009;1793(6):1008-22.
  • 19. Yardan T, Erenler AK, Baydin A, Aydin K, Cokluk C. Usefulness of S100B protein in neurological disorders. The Journal of the Pakistan Medical Association. 2011;61(3):276-81.
  • 20. Gurgen SG, Sayin O, Cetiin F, Sarsmaz HY, Yazici GN, Umur N, et al. The effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. Acs Chemical Neuroscience. 2021;12(16):3028-37.
  • 21. Niijima A, Togiyama T, Adachi A. Cephalic-phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiology Behavior. 1990;48(6):905-8.
  • 22. Rogers PJ, Blundell JE. Umami and appetite: effects of monosodium glutamate on hunger and food intake in human subjects. Physiology Behavior. 1990;48(6):801-4.
  • 23. Hu L, Fernstrom JD, Goldsmith PC. Exogenous glutamate enhances glutamate receptor subunit expression during selective neuronal injury in the ventral arcuate nucleus of postnatal mice. Neuroendocrinology. 1998;68(2):77-88.
  • 24. Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats. Indian Journal of Clinical Biochemistry. 2013;28(3):292-8.
  • 25. Geha RS, Beiser A, Ren C, Patterson R, Greenberger PA, Grammer LC, et al. Multicenter, double-blind, placebo-controlled, multiple-challenge evaluation of reported reactions to monosodium glutamate. The Journal of Allergy and Clinical Immunology. 2000;106(5):973-80.
  • 26. Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human and Experimental Toxicology. 2006;25(5):251-9.
  • 27. Moreno G, Perelló M, Gaillard RC, Spinedi E. Orexin a stimulates hypothalamic-pituitary-adrenal (HPA) axis function, but not food intake, in the absence of full hypothalamic NPY-ergic activity. Endocrine. 2005;26:99-106.
  • 28. Chaparro-Huerta V, Rivera-Cervantes M, Torres-Mendoza B, Beas-Zarate C. Neuronal death and tumor necrosis factor-α response to glutamate-induced excitotoxicity in the cerebral cortex of neonatal rats. Neuroscience Letters. 2002;333(2):95-8.
  • 29. Farombi E, Onyema O. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human Experimental Toxicology. 2006;25(5):251-9.
  • 30. Jaworska-Adamu J, Krawczyk A, Rycerz K, Golynski M. Reactivity of astrocytes in hippocampal CA1 area in rats after administration of habanero peppers. Folia Histochemica et Cytobiologica. 2021;59(1):1-7.
  • 31. Yeşil H, Tuğlu İ. The relation of oxidative stress and apoptosis to histopathologic alterations in the lungs as a result of global cerebral ischemia. Biotechnic and Histochemistry. 2019;94(8):555-68.
  • 32. Jaworska-Adamu J, Krawczyk A, Rycerz K. Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10-day-old rats after monosodium glutamate treatment. Polish Journal of Veterinary Sciences. 2015;18:767–74.
  • 33. Lonergan PE, Martin DS, Horrobin DF, Lynch MA. Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to γ-irradiation. Journal of Biological Chemistry. 2002;277(23):20804-11.
  • 34. Martin DS, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, et al. Apoptotic changes in the aged brain are triggered by interleukin-1β-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. Journal of Biological Chemistry. 2002;277(37):34239-46.
  • 35. Sarsılmaz M, Songur A, Özyurt H, Kuş İ, Özen OA, Özyurt B, et al. Potential role of dietary ω-3 essential fatty acids on some oxidant/ antioxidant parameters in rats’ corpus striatum. Prostaglandins, Leukotrienes Essential Fatty Acids. 2003;69(4):253-9.
  • 36. Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sciences. 2019;227:1-7.
  • 37. Singh PK, Singh MK, Yadav RS, Nath R, Mehrotra A, Rawat A, et al. Omega-3 fatty acid attenuates oxidative stress in cerebral cortex, cerebellum, and hippocampus tissue and improves neurobehavioral activity in chronic lead-induced neurotoxicity. Nutritional Neuroscience. 2019;22(2):83-97.
  • 38. Luo CM, Ren HX, Wan JB, Yao XL, Zhang XJ, He CW, et al. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. Journal of Lipid Research. 2014;55(7):1288-97.
  • 39. Zararsiz I, Meydan S, Sarsilmaz M, Songur A, Ozen OA, Sogut S. Protective effects of omega-3 essential fatty acids against formaldehyde-induced cerebellar damage in rats. Toxicology and Industrial Health. 2011;27(6):489-95.
  • 40. Jahanshahi M, Nickmahzar EG, Babakordi F. Effect of Gingko biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anatomical Science International. 2013;88(4):217-22.

MONOSODYUM GLUTAMAT İLE İNDÜKLENMİŞ HİPOKAMPAL HASARDA OMEGA-3 YAĞ ASİTLERİNİN KORUYUCU ETKİSİNİN İNCELENMESİ

Year 2024, Volume: 31 Issue: 1, 21 - 29, 18.03.2024
https://doi.org/10.17343/sdutfd.1292144

Abstract

Amaç
Monosodyum glutamat (MSG) birçok hazır besinin
içine katılan ve beyinde nöronlar üzerine eksitotoksik
olduğu bilinen lezzet arttırıcıdır. Çalışmanın amacı
çocukluk dönemindeki ratların hippokampus bölgelerindeki
nöronlarda, MSG’nın olası toksik etkisine karşı
eikosapentaenoik asit (EPA) ve beyin gelişiminde
etkili olan dokosaheksaenoik asit (DHA)’in koruyucu
etkilerine rağmen beyinde oluşan nöral hasarın immünohistokimyasal
incelenmesidir.
Gereç ve Yöntem
Her bir grupta çocukluk döneminde olan 4 haftalık,
170-205 gr ağırlığında 6 adet, toplam 24 Wistar
albino dişi ratlar kullanılacaktır.
1. Grup: Kontrol grubu (0,9 % saline solution 1.3.5.7.9.
günler subcutan (sc) verildi,
2. Grup: MSG uygulanan (4 mg/g 1.3.5.7.9. günler
sc),
3. Grup: MSG + EPA uygulanan (4 mg/g 1.3.5.7.9.
günler sc + 300 mg/kg 9 gün oral),
4. Grup: MSG + DHA uygulanan (4 mg/g 1.3.5.7.9.
günler sc + 300 mg/kg 9 günler oral), 9. Günün sonunda
beyin dokularının hipokampus CA1 bölgesinde
immünohistokimya ve TUNEL tekniği uygulaması için
%10 luk nötral formalin içine alınacaktır.
Bulgular
Çocukluk dönemindeki dişi ratların beyinlerinin hippokampüs
CA1 bölgesi incelendiğinde, S100β immunoreaktivitesi
MSG grubunda diğer gruplara göre kuvvetli
ve anlamlı reaksiyon gösterdi (p=0,000). MSG+EPA
ve MSG+DHA grupları arasında fark anlamsız olduğu
izlendi (p<0,05). GFAP immunoreaktivitesi yine MSG
grubunda diğer gruplara göre kuvvetli ve anlamlı reaksiyon
gösterdi (p=0,000). MSG+EPA ve MSG+DHA
grupları hem kendi aralarında hemde kontrol grubu
ile karşılaştırmalarında fark anlamsız olduğu gözlendi
(p<0.05). MSG grubunda nöroglial hücrelerde kuvvetli
TUNEL pozitif reaksiyon gösterdi. Kontrol grubunda
TUNEL boyama reakasiyonu zayıftı. MSG-EPA
ve MSG-DHA gruplarında tüm alanlarda hipokampal
nöronlarda TUNEL boyama reaksiyonunda azalma
saptandı. MSG+EPA ve hem kontrol grubu arasında
hem de MSG+DHA grupları arasında TUNEL boyama
reaksiyonunda anlamlı bir fark gözlenmedi (p>0,05).
Sonuç
MSG, beyinde hipokampus CA1 bölgesinde, S100β,
GFAP ve TUNEL pozitif ekspresyonunda artışa neden
olurken, MSG-EPA ve MSG-DHA hippokampal nöronlarda
nöronal ekpresyonlarda ve apoptozisde azalmaya
neden olmuştur. Bu nedenle çocukluk döneminde
MSG’nin Omega-3 yağ asitleri ile birlikte kullanımının
nöroglial hasarlanma ve apoptozisten koruyucu etkisi
olabileceği sonucuna varıldı.

References

  • 1. Schwartzkroin PA. Role of the hippocampus in epilepsy. Hippocampus. 1994;4(3):239-42.
  • 2. Kesner RP, Goodrich-Hunsaker NJ. Developing an animal model of human amnesia: the role of the hippocampus. Neuropsychologia. 2010;48(8):2290-302.
  • 3. Marlatt MW, Lucassen PJ. Neurogenesis and Alzheimer's disease: biology and pathophysiology in mice and men. Current Alzheimer Research. 2010;7(2):113-25.
  • 4. Zealand FSAN. Monosodium glutamate, a safety assessment. Technical report series no. 20. 2003.
  • 5. Yamaguchi S, Kimizuka A. Psychometric studies on the taste of monosodium. Glutamic acid: Advances in Biochemistry Physiology. 1979:35.
  • 6. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, et al. An amino-acid taste receptor. Nature. 2002;416(6877):199-202.
  • 7. Hashem HE, El-Din Safwat M, Algaidi S. The effect of monosodium glutamate on the cerebellar cortex of male albino rats and the protective role of vitamin C (histological and immunohistochemical study). Journal of Molecular Histology. 2012;43:179-86.
  • 8. Gao J, Wu J, Zhao X, Zhang W, Zhang Y, Zhang Z. Transplacental neurotoxic effects of monosodium glutamate on structures and functions of specific brain areas of filial mice. Sheng Li Xue Bao:[Acta Physiologica Sinica]. 1994;46(1):44-51.
  • 9. Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. The Journal of Nutrition. 2000;130(4):1007S-15S.
  • 10. Platt SR. The role of glutamate in central nervous system health and disease–a review. The Veterinary Journal. 2007;173(2):278-86.
  • 11. Luján R, Shigemoto R, López-Bendito G. Glutamate and GABA receptor signalling in the developing brain. Neuroscience. 2005;130(3):567-80.
  • 12. Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA. Modulation of amyloid‐β‐induced and age‐associated changes in rat hippocampus by eicosapentaenoic acid. Journal of Neurochemistry. 2007;103(3):914-26.
  • 13. Li M, Zhu Q, Hu C, Giesy JP, Kong Z, Cui Y. Protective effects of eicosapentaenoic acid on genotoxicity and oxidative stress of cyclophosphamide in mice. Environmental Toxicology. 2011;26(3):217-23.
  • 14. Gamoh S, Hashimoto M, Sugioka K, Hossain MS, Hata N, Misawa Y, et al. Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience. 1999;93(1):237-41.
  • 15. Montgomery D. Astrocytes: form, functions, and roles in disease. Veterinary Pathology. 1994;31(2):145-67.
  • 16. Norenberg MD. Astrocyte responses to CNS injury. Journal of Neuropathology Experimental Neurology. 1994;53(3):213-20.
  • 17. Rothermundt M, Peters M, Prehn JH, Arolt V. S100B in brain damage and neurodegeneration. Microscopy Research Technique. 2003;60(6):614-32.
  • 18. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B's double life: intracellular regulator and extracellular signal. Biochimica et Biophysica Acta -Molecular Cell Research. 2009;1793(6):1008-22.
  • 19. Yardan T, Erenler AK, Baydin A, Aydin K, Cokluk C. Usefulness of S100B protein in neurological disorders. The Journal of the Pakistan Medical Association. 2011;61(3):276-81.
  • 20. Gurgen SG, Sayin O, Cetiin F, Sarsmaz HY, Yazici GN, Umur N, et al. The effect of monosodium glutamate on neuronal signaling molecules in the hippocampus and the neuroprotective effects of omega-3 fatty acids. Acs Chemical Neuroscience. 2021;12(16):3028-37.
  • 21. Niijima A, Togiyama T, Adachi A. Cephalic-phase insulin release induced by taste stimulus of monosodium glutamate (umami taste). Physiology Behavior. 1990;48(6):905-8.
  • 22. Rogers PJ, Blundell JE. Umami and appetite: effects of monosodium glutamate on hunger and food intake in human subjects. Physiology Behavior. 1990;48(6):801-4.
  • 23. Hu L, Fernstrom JD, Goldsmith PC. Exogenous glutamate enhances glutamate receptor subunit expression during selective neuronal injury in the ventral arcuate nucleus of postnatal mice. Neuroendocrinology. 1998;68(2):77-88.
  • 24. Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. Protective Effect of Calendula officinalis L. Flowers Against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats. Indian Journal of Clinical Biochemistry. 2013;28(3):292-8.
  • 25. Geha RS, Beiser A, Ren C, Patterson R, Greenberger PA, Grammer LC, et al. Multicenter, double-blind, placebo-controlled, multiple-challenge evaluation of reported reactions to monosodium glutamate. The Journal of Allergy and Clinical Immunology. 2000;106(5):973-80.
  • 26. Farombi EO, Onyema OO. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human and Experimental Toxicology. 2006;25(5):251-9.
  • 27. Moreno G, Perelló M, Gaillard RC, Spinedi E. Orexin a stimulates hypothalamic-pituitary-adrenal (HPA) axis function, but not food intake, in the absence of full hypothalamic NPY-ergic activity. Endocrine. 2005;26:99-106.
  • 28. Chaparro-Huerta V, Rivera-Cervantes M, Torres-Mendoza B, Beas-Zarate C. Neuronal death and tumor necrosis factor-α response to glutamate-induced excitotoxicity in the cerebral cortex of neonatal rats. Neuroscience Letters. 2002;333(2):95-8.
  • 29. Farombi E, Onyema O. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Human Experimental Toxicology. 2006;25(5):251-9.
  • 30. Jaworska-Adamu J, Krawczyk A, Rycerz K, Golynski M. Reactivity of astrocytes in hippocampal CA1 area in rats after administration of habanero peppers. Folia Histochemica et Cytobiologica. 2021;59(1):1-7.
  • 31. Yeşil H, Tuğlu İ. The relation of oxidative stress and apoptosis to histopathologic alterations in the lungs as a result of global cerebral ischemia. Biotechnic and Histochemistry. 2019;94(8):555-68.
  • 32. Jaworska-Adamu J, Krawczyk A, Rycerz K. Immunohistochemical evaluation of hippocampal CA1 region astrocytes in 10-day-old rats after monosodium glutamate treatment. Polish Journal of Veterinary Sciences. 2015;18:767–74.
  • 33. Lonergan PE, Martin DS, Horrobin DF, Lynch MA. Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to γ-irradiation. Journal of Biological Chemistry. 2002;277(23):20804-11.
  • 34. Martin DS, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, et al. Apoptotic changes in the aged brain are triggered by interleukin-1β-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. Journal of Biological Chemistry. 2002;277(37):34239-46.
  • 35. Sarsılmaz M, Songur A, Özyurt H, Kuş İ, Özen OA, Özyurt B, et al. Potential role of dietary ω-3 essential fatty acids on some oxidant/ antioxidant parameters in rats’ corpus striatum. Prostaglandins, Leukotrienes Essential Fatty Acids. 2003;69(4):253-9.
  • 36. Alzoubi KH, Mayyas F, Abu Zamzam HI. Omega-3 fatty acids protects against chronic sleep-deprivation induced memory impairment. Life Sciences. 2019;227:1-7.
  • 37. Singh PK, Singh MK, Yadav RS, Nath R, Mehrotra A, Rawat A, et al. Omega-3 fatty acid attenuates oxidative stress in cerebral cortex, cerebellum, and hippocampus tissue and improves neurobehavioral activity in chronic lead-induced neurotoxicity. Nutritional Neuroscience. 2019;22(2):83-97.
  • 38. Luo CM, Ren HX, Wan JB, Yao XL, Zhang XJ, He CW, et al. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. Journal of Lipid Research. 2014;55(7):1288-97.
  • 39. Zararsiz I, Meydan S, Sarsilmaz M, Songur A, Ozen OA, Sogut S. Protective effects of omega-3 essential fatty acids against formaldehyde-induced cerebellar damage in rats. Toxicology and Industrial Health. 2011;27(6):489-95.
  • 40. Jahanshahi M, Nickmahzar EG, Babakordi F. Effect of Gingko biloba extract on scopolamine-induced apoptosis in the hippocampus of rats. Anatomical Science International. 2013;88(4):217-22.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences
Journal Section Research Articles
Authors

Hayrunnisa Yesil Sarsmaz 0000-0002-9790-1723

Seren Gülşen Gürgen 0000-0002-5514-1404

Publication Date March 18, 2024
Submission Date May 3, 2023
Acceptance Date December 30, 2023
Published in Issue Year 2024 Volume: 31 Issue: 1

Cite

Vancouver Yesil Sarsmaz H, Gürgen SG. MONOSODYUM GLUTAMAT İLE İNDÜKLENMİŞ HİPOKAMPAL HASARDA OMEGA-3 YAĞ ASİTLERİNİN KORUYUCU ETKİSİNİN İNCELENMESİ. Med J SDU. 2024;31(1):21-9.

                                                                                               14791 


Süleyman Demirel Üniversitesi Tıp Fakültesi Dergisi/Medical Journal of Süleyman Demirel University is licensed under Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International.