Araştırma Makalesi
BibTex RIS Kaynak Göster

Pulpa Kapak Malzemelerinin Antibakteriyel Etkilerinin Karşılaştırılması

Yıl 2021, , 553 - 560, 31.08.2021
https://doi.org/10.15311/selcukdentj.896007

Öz

Bu çalışmanın amacı, altı farklı pulpa kapak materyalinin farklı zaman dilimlerinde Streptococcus mutans, Lactobacillus acidophilus ve Enterococcus faecalis bakterileri üzerindeki antibakteriyel etkilerini değerlendirmektir. Çalışmamızda TheraCal LC, Dycal, Biodentine, Calcimol LC, Activa ve MTA Angelus'un antibakteriyel etkileri disk difüzyon yöntemi kullanılarak S. mutans, L. acidophilus ve E. faecalis suşlarına karşı test edilmiştir. Malzemelerin her biri, üreticinin önerileri doğrultusunda önceden hazırlanmış standart, 5 mm çapında içi boş steril disklerde sertleştirildi. Numune kaplarına yerleştirilen malzemeler UV ışık cihazı altında 20 dakika süreyle dezenfekte edildi. Materyaller, 2.5-3 cm aralıklarla mikroorganizmaların yetiştirildiği petri kaplarına yerleştirildi. 37 ° C'de 24-48 saat inkübasyona bırakılan disklerin etrafındaki inhibisyon zonu çapları milimetre cinsinden ölçüldü. Verilerin istatistiksel analizi One Way ANOVA kullanılarak yapıldı. Çalışmanın sonunda, test edilen materyaller, kullanılan tüm bakteri suşları üzerinde istatistiksel olarak anlamlı bir antibakteriyel etki gösterdi (p <0.05). MTA Angelus materyali, diğer hamur kapama materyallerine kıyasla her üç bakteri grubu üzerinde en yüksek etkiyi göstermiştir. Calsimol LC ajanı, L. acidophilus üzerinde en büyük etkiye sahipken, çalışmada kullanılan diğer ajanlar S. mutans üzerinde en büyük etkiyi göstermiştir. Çalışmada kullanılan tüm pulpa kapak materyallerinin antibakteriyel etkisi 48. saat sonunda 24. saatin sonuna göre daha yüksek bulundu ancak istatistiksel olarak anlamlı bir fark yoktu (p> 0.05).

Destekleyen Kurum

Yok

Kaynakça

  • 1. Hilton T. J. “Keys to clinical success with pulp capping: a review of the literature,” Operative Dentistry. 2009; 34 (5): 615-25.
  • 2. Arandi N. “Calcium hydroxide liners: a literature review,” Clinical, Cosmetic and Investigational Dentistry. 2017; 9: 67-72.
  • 3. Stangvaltaite L, Schwendicke F, Holmgren C. et al. “Management of pulps exposed during carious tissue removal in adults: a multi-national questionnaire-based survey,” Clinical Oral Investigations. 2016; 21 (7): 2303-9.
  • 4. Al-Hiyasat A. S, Barrieshi-Nusair K. M, Al-Omari M. A. The radiographic outcomes of direct pulp-capping procedures performed by dental students: a retrospective study. J Am Dent Assoc. 2006;137 (12): 1699–705.
  • 5. Ricketts D. Management of the deep carious lesion and the vital pulp dentine complex. Br Dent J. 2001; 191 (11): 606–10.
  • 6. Ghoddusi J, Forghani M, Parisay I. New Approaches in Vital Pulp Therapy in Permanent Teeth. Iran Endod J 2014; 9: 15-22.
  • 7. Ge Y, Caufield P, Fisch G, Li Y. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries research. 2008; 42: 444-8.
  • 8. Çakır F. Y, Gürgan S, Atar N. Çürük Mikrobiyolojisi. Hacettepe Diş Hek Fak Derg. 2010; 34: 78-91.
  • 9. Gross El, Beall Cj, Kutsch Sr, Firestone Nd, Leys Ej , Griffen Al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. 2012; 7: e47722.
  • 10. Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 2005; 33: 248–55.
  • 11. Baysan A, Yalçın Çakır F, Gürgan S, Whiley RA. Reduction in bacteria in infected dentin by antimicrobial bonding agent. J Dent Res. 2009; 88: 91.
  • 12. Lin Y. H, Mickel A. K, Chogle S. Effectiveness of selected materials against Enterococcus faecalis: Part 3. The antibacterial effect of calcium hydroxide and chlorhexidine on Enterococcus faecalis. Journal of endodontics. 2003; 29 (9): 565-6.
  • 13. Mickenautsch S, Yengopal V, Banerjee A. Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic review. Dent Mater. 2010; 26 (8): 761–70.
  • 14. Gandolfi M. G, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015; 13 (1): 43–60.
  • 15. H. Bakhtiar, M. H. Nekoofar, P. Aminishakib et al., “Human pulp responses to partial pulpotomy treatment with +eraCal as compared with biodentine and ProRoot MTA: a clinical trial,” Journal of Endodontics, 2017; 43 (11): 1786-91.
  • 16. F. A. Katge and D. P. Patil, “Comparative analysis of 2 calcium silicate-based cements (biodentine and mineral trioxide aggregate) as direct pulp-capping agent in young permanent molars: a split mouth study,” Journal of Endodontics. 2017; 43 (4): 507-13.
  • 17. Fathy S. Remineralization ability of two hydraulic calcium-silicate based dental pulp capping materials: Cell-independent model. J. Clin. Exp. Dent. 2019; 11: 360-6.
  • 18. Porenczuk A, Jankiewicz B, Naurecka M, Bartosewicz B, Sierakowski B, Gozdowski D, Kostecki J, Nasiłowska B, Mielczarek A. A comparison of the remineralizing potential of dental restorative materials by analyzing their fluoride release profiles. Adv. Clin. Exp. Med. 2019; 28: 815–23.
  • 19. Moussa, S.A. Mineral Trioxide Aggregate (MTA) vs. Calcium Hydroxide in Direct Pulp Capping Literature Review. Online J. Dent. Oral Heal. 2018; 1: 1–6. 20. Maalej S. M, Meziou M. R, Rhimi F. M, Hammami A. Comparison of disc diffusion, Etest and agar dilution for susceptibility testing of colistin against Enterobacteriaceae. Letters in Applied Microbiology. 2011; 53 (5): 546-51.
  • 21. Bhavana V, Chaitanya K. P, Gandi P, Patil J, Dola B, Reddy R. B. Evaluation of antibacterial and antifungal activity of new calcium-based cement [Biodentine] compared to MTA and glass ionomer cement. J Conserv Dent. 2015; 18 (1): 44-6. 22. Ghoddusi J, Forghani M, Parisay I. Newvapproaches in vital pulp therapy in permanent teeth. Iran Endod J 2014; 9:15-22.
  • 23. Aguilar P, Linsuwanont P. Vital pulp therapy in vital permanent teeth with cariously exposed pulp: A systematic review. J Endod. 2011; 37: 581-7.
  • 24. Arandi N. Z, Rabi T. TheraCal LC: From Biochemical and Bioactive Properties to Clinical Applications. International Journal of Dentistry Volume 2018; ID 3484653: 6.
  • 25. Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S. “Solubility and pH of direct pulp capping materials: a comparative study,” Journal of Applied Biomaterials & Functional Materials. 2015; 13 (2): 73-193.
  • 26. Furey A, Hjelmhaug J, Lobner D. Toxicity of Flow Line, Durafill VS, and Dycal to dental pulp cells: effects of growth factors. J. Endod. 2010; 36 (7): 1149-53.
  • 27. Qureshi A, Soujanya E, Nandakumar, Pratapkumar, Sambashivarao. Recent advances in pulp capping materials: an overview. J Clin Diagn Res 2014; 8: 316-21.
  • 28. Islam I, Chng H. K, Yap A. U. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J. 2006; 39: 220–5.
  • 29. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003; 29: 814–7.
  • 30. Duarte M. A, Demarchi A. C, Yamashita J. C, Kuga M. C, Fraga Sde C. pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95 (3): 345-7.
  • 31. Zhu L, Yang J, Zhang J, Peng B. A comparative study of bioaggregate and proroot mta on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014; 40: 1118-23.
  • 32. Zanini M, Sautier J. M, Berdal A, Simon S. “Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization,” Journal of Endodontics. 2012; 38 (9): 1220-6.
  • 33. About I. Biodentine: from biochemical and bioactive properties to clinical applications. Giornale Italiano di Endodonzia. 2016; 30: 81-8.
  • 34. Arora V, Nikhil V, Sharma N, Arora P. Bioactive dentin replacement. J Dent Med Sci. 2013; 12: 51-7.
  • 35. Bostanci B, Gezgin O The In Vitro Evaluation of Calcium and Bioactive Glass Based Pulp Capping. J Dent Oral Care Med. 2018; 4 (3): 301.
  • 36. Abou ElReash A, Hamama H, Abdo W, Wu Q, Zaen El-Din A, Xiaoli X. Biocompatibility of new bioactive resin composite versus calcium silicate cements: an animal study. BMC Oral Health. 2019; 19 (1): 194.
  • 37. Farrugia, C, Lung, CYK, Schembri Wismayer, P, Arias-Moliz, MT & Camilleri. 'The Relationship of Surface Characteristics and Antimicrobial Performance of Pulp Capping Materials'. Journal of Endodontics. 2018; 44 (7): 1115-20.
  • 38. Erfanparast L, Iranparvar P, Vafaei A. Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. European Archives of Paediatric Dentistry. 2018; 19: 197-203.
  • 39. Poggio C, Beltrami R, Colombo M, Ceci M, Dagna A, Chiesa M. In vitro antibacterial activity of different pulp capping materials. J Clin Exp Dent. 2015; 7 (5): 584-8.
  • 40. Bağış Y. H, Ertaş E, Mısırlıgil A, Bağış B. Evaluation of Antibacterial Effects of Calcium Hydroxide Liners. A. Ü. Diş Hek. Fak. Derg. 2001; 28 (3): 251-6.
  • 41. Fathy S. M, Abd El-Aziz A. M, Labah D. A. Cellular interaction and antibacterial efficacy of two hydraulic calcium silicate-based cements: Cell-dependent model. J Conserv Dent. 2019; 22 (1): 17-22.
  • 42. ElReash A. A, Hamama H, Eldars W, Lingwei G, El-Din A. M. Z, Xiaoli X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health. 2019; 19: 235.
  • 43. Eldeniz A. U, Hadimli H. H, Ataoglu H, Ørstavik D. “Antibacterial effect of selected root-end filling materials,” Journal of Endodontics. 2006; 32 (4): 345-9.
  • 44. Al-Hezaimi K, Al-Shalan T. A, Naghshbandi J, Oglesby S, Simon J. H. S, Rotstein I. “Antibacterial effect of two Mineral Trioxide Aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro,” Journal of Endodontics. 2006; 32 (11): 1053-6.
  • 45. Luczaj-Cepowicz E, Pawinska M, Marczuk-Kolada G, Leszczynska K, Waszkiel D. Antibacterial activity of two Mineral Trioxide Aggregate materials in vitro evaluation. Ann Acad Med Stetin. 2008; 54 (1):147-50.
  • 46. Hasan Zarrabi M, Javidi M, Naderinasab M, Gharechahi M. Comparative evaluation of antimicrobial activity of three cements: new endodontic cement [NEC], mineral trioxide aggregate [MTA] and Portland. J Oral Sci. 2009; 51 (3): 437-42.
  • 47. Razmi H, Aminsobhani M, Bolhari B, Shamshirgar F, Shahsavan S, Shamshiri AR. Calcium Enriched Mixture and Mineral Trioxide Aggregate Activities against Enterococcus Faecalis in Presence of Dentin. Iran Endod J. 2013; 8 (4):191-6.
  • 48. Donyavi Z, Heidari N, Khoshbin E, Shahriari S, Farhadian M, Yousefi Mashouf R, et al. Antibacterial activity of mineral trioxide aggregate, new endodontic cement, Retro MTA and Ortho MTA against common endodontic pathogens. IAJPS. 2017; 4 (12): 4720-8.
  • 49. Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, et al. Cytocompatibility and antibacterial properties of capping materials. Scientific World Journal. 2014; ID 181945: 10.
  • 50. Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC, In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater. 2006; 22: 527-32.

Comparison Of Antibacterial Effects Of Pulp Capping Materials

Yıl 2021, , 553 - 560, 31.08.2021
https://doi.org/10.15311/selcukdentj.896007

Öz

The aim of this study is to evaluate the antibacterial effects of six different pulp capping materials on Streptococcus mutans, Lactobacillus acidophilus and Enterococcus faecalis bacteria in different time periods. In our study, the antibacterial effects of TheraCal LC, Dycal, Biodentine, Calcimol LC, Activa and MTA Angelus were tested against strains of S. mutans, L. acidophilus and E. faecalis using the disk diffusion method. Each of the materials was hardened in standard, 5 mm diameter, hollow sterile discs prepared beforehand in line with the manufacturer's recommendations. The materials placed in the sample containers were disinfected under UV light device for 20 minutes. The materials were placed on petri dishes where microorganisms were cultivated at 2.5-3 cm intervals. The inhibition zone diameters around the discs that were left to incubate for 24-48 hours at 37°C were measured in millimeters. Statistical analysis of the data was performed using One Way ANOVA. At the end of the study, the tested materials showed a statistically significant antibacterial effect on all bacterial strains used (p<0.05). MTA Angelus material showed the highest effect on all three bacterial groups compared to other pulp capping materials. Calsimol LC agent had the greatest effect on L. acidophilus, while other agents used in the study showed the greatest effect on S. mutans. The antibacterial effect of all pulp capping materials used in the study was found to be higher at the end of the 48th hour than at the end of the 24th hour, but there was no statistically significant difference (p> 0.05).

Kaynakça

  • 1. Hilton T. J. “Keys to clinical success with pulp capping: a review of the literature,” Operative Dentistry. 2009; 34 (5): 615-25.
  • 2. Arandi N. “Calcium hydroxide liners: a literature review,” Clinical, Cosmetic and Investigational Dentistry. 2017; 9: 67-72.
  • 3. Stangvaltaite L, Schwendicke F, Holmgren C. et al. “Management of pulps exposed during carious tissue removal in adults: a multi-national questionnaire-based survey,” Clinical Oral Investigations. 2016; 21 (7): 2303-9.
  • 4. Al-Hiyasat A. S, Barrieshi-Nusair K. M, Al-Omari M. A. The radiographic outcomes of direct pulp-capping procedures performed by dental students: a retrospective study. J Am Dent Assoc. 2006;137 (12): 1699–705.
  • 5. Ricketts D. Management of the deep carious lesion and the vital pulp dentine complex. Br Dent J. 2001; 191 (11): 606–10.
  • 6. Ghoddusi J, Forghani M, Parisay I. New Approaches in Vital Pulp Therapy in Permanent Teeth. Iran Endod J 2014; 9: 15-22.
  • 7. Ge Y, Caufield P, Fisch G, Li Y. Streptococcus mutans and Streptococcus sanguinis colonization correlated with caries experience in children. Caries research. 2008; 42: 444-8.
  • 8. Çakır F. Y, Gürgan S, Atar N. Çürük Mikrobiyolojisi. Hacettepe Diş Hek Fak Derg. 2010; 34: 78-91.
  • 9. Gross El, Beall Cj, Kutsch Sr, Firestone Nd, Leys Ej , Griffen Al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. 2012; 7: e47722.
  • 10. Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol 2005; 33: 248–55.
  • 11. Baysan A, Yalçın Çakır F, Gürgan S, Whiley RA. Reduction in bacteria in infected dentin by antimicrobial bonding agent. J Dent Res. 2009; 88: 91.
  • 12. Lin Y. H, Mickel A. K, Chogle S. Effectiveness of selected materials against Enterococcus faecalis: Part 3. The antibacterial effect of calcium hydroxide and chlorhexidine on Enterococcus faecalis. Journal of endodontics. 2003; 29 (9): 565-6.
  • 13. Mickenautsch S, Yengopal V, Banerjee A. Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: A quantitative systematic review. Dent Mater. 2010; 26 (8): 761–70.
  • 14. Gandolfi M. G, Siboni F, Botero T, Bossù M, Riccitiello F, Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015; 13 (1): 43–60.
  • 15. H. Bakhtiar, M. H. Nekoofar, P. Aminishakib et al., “Human pulp responses to partial pulpotomy treatment with +eraCal as compared with biodentine and ProRoot MTA: a clinical trial,” Journal of Endodontics, 2017; 43 (11): 1786-91.
  • 16. F. A. Katge and D. P. Patil, “Comparative analysis of 2 calcium silicate-based cements (biodentine and mineral trioxide aggregate) as direct pulp-capping agent in young permanent molars: a split mouth study,” Journal of Endodontics. 2017; 43 (4): 507-13.
  • 17. Fathy S. Remineralization ability of two hydraulic calcium-silicate based dental pulp capping materials: Cell-independent model. J. Clin. Exp. Dent. 2019; 11: 360-6.
  • 18. Porenczuk A, Jankiewicz B, Naurecka M, Bartosewicz B, Sierakowski B, Gozdowski D, Kostecki J, Nasiłowska B, Mielczarek A. A comparison of the remineralizing potential of dental restorative materials by analyzing their fluoride release profiles. Adv. Clin. Exp. Med. 2019; 28: 815–23.
  • 19. Moussa, S.A. Mineral Trioxide Aggregate (MTA) vs. Calcium Hydroxide in Direct Pulp Capping Literature Review. Online J. Dent. Oral Heal. 2018; 1: 1–6. 20. Maalej S. M, Meziou M. R, Rhimi F. M, Hammami A. Comparison of disc diffusion, Etest and agar dilution for susceptibility testing of colistin against Enterobacteriaceae. Letters in Applied Microbiology. 2011; 53 (5): 546-51.
  • 21. Bhavana V, Chaitanya K. P, Gandi P, Patil J, Dola B, Reddy R. B. Evaluation of antibacterial and antifungal activity of new calcium-based cement [Biodentine] compared to MTA and glass ionomer cement. J Conserv Dent. 2015; 18 (1): 44-6. 22. Ghoddusi J, Forghani M, Parisay I. Newvapproaches in vital pulp therapy in permanent teeth. Iran Endod J 2014; 9:15-22.
  • 23. Aguilar P, Linsuwanont P. Vital pulp therapy in vital permanent teeth with cariously exposed pulp: A systematic review. J Endod. 2011; 37: 581-7.
  • 24. Arandi N. Z, Rabi T. TheraCal LC: From Biochemical and Bioactive Properties to Clinical Applications. International Journal of Dentistry Volume 2018; ID 3484653: 6.
  • 25. Poggio C, Lombardini M, Colombo M, Beltrami R, Rindi S. “Solubility and pH of direct pulp capping materials: a comparative study,” Journal of Applied Biomaterials & Functional Materials. 2015; 13 (2): 73-193.
  • 26. Furey A, Hjelmhaug J, Lobner D. Toxicity of Flow Line, Durafill VS, and Dycal to dental pulp cells: effects of growth factors. J. Endod. 2010; 36 (7): 1149-53.
  • 27. Qureshi A, Soujanya E, Nandakumar, Pratapkumar, Sambashivarao. Recent advances in pulp capping materials: an overview. J Clin Diagn Res 2014; 8: 316-21.
  • 28. Islam I, Chng H. K, Yap A. U. X-ray diffraction analysis of mineral trioxide aggregate and Portland cement. Int Endod J. 2006; 39: 220–5.
  • 29. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003; 29: 814–7.
  • 30. Duarte M. A, Demarchi A. C, Yamashita J. C, Kuga M. C, Fraga Sde C. pH and calcium ion release of 2 root-end filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95 (3): 345-7.
  • 31. Zhu L, Yang J, Zhang J, Peng B. A comparative study of bioaggregate and proroot mta on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014; 40: 1118-23.
  • 32. Zanini M, Sautier J. M, Berdal A, Simon S. “Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization,” Journal of Endodontics. 2012; 38 (9): 1220-6.
  • 33. About I. Biodentine: from biochemical and bioactive properties to clinical applications. Giornale Italiano di Endodonzia. 2016; 30: 81-8.
  • 34. Arora V, Nikhil V, Sharma N, Arora P. Bioactive dentin replacement. J Dent Med Sci. 2013; 12: 51-7.
  • 35. Bostanci B, Gezgin O The In Vitro Evaluation of Calcium and Bioactive Glass Based Pulp Capping. J Dent Oral Care Med. 2018; 4 (3): 301.
  • 36. Abou ElReash A, Hamama H, Abdo W, Wu Q, Zaen El-Din A, Xiaoli X. Biocompatibility of new bioactive resin composite versus calcium silicate cements: an animal study. BMC Oral Health. 2019; 19 (1): 194.
  • 37. Farrugia, C, Lung, CYK, Schembri Wismayer, P, Arias-Moliz, MT & Camilleri. 'The Relationship of Surface Characteristics and Antimicrobial Performance of Pulp Capping Materials'. Journal of Endodontics. 2018; 44 (7): 1115-20.
  • 38. Erfanparast L, Iranparvar P, Vafaei A. Direct pulp capping in primary molars using a resin-modified Portland cement-based material (TheraCal) compared to MTA with 12-month follow-up: a randomised clinical trial. European Archives of Paediatric Dentistry. 2018; 19: 197-203.
  • 39. Poggio C, Beltrami R, Colombo M, Ceci M, Dagna A, Chiesa M. In vitro antibacterial activity of different pulp capping materials. J Clin Exp Dent. 2015; 7 (5): 584-8.
  • 40. Bağış Y. H, Ertaş E, Mısırlıgil A, Bağış B. Evaluation of Antibacterial Effects of Calcium Hydroxide Liners. A. Ü. Diş Hek. Fak. Derg. 2001; 28 (3): 251-6.
  • 41. Fathy S. M, Abd El-Aziz A. M, Labah D. A. Cellular interaction and antibacterial efficacy of two hydraulic calcium silicate-based cements: Cell-dependent model. J Conserv Dent. 2019; 22 (1): 17-22.
  • 42. ElReash A. A, Hamama H, Eldars W, Lingwei G, El-Din A. M. Z, Xiaoli X. Antimicrobial activity and pH measurement of calcium silicate cements versus new bioactive resin composite restorative material. BMC Oral Health. 2019; 19: 235.
  • 43. Eldeniz A. U, Hadimli H. H, Ataoglu H, Ørstavik D. “Antibacterial effect of selected root-end filling materials,” Journal of Endodontics. 2006; 32 (4): 345-9.
  • 44. Al-Hezaimi K, Al-Shalan T. A, Naghshbandi J, Oglesby S, Simon J. H. S, Rotstein I. “Antibacterial effect of two Mineral Trioxide Aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro,” Journal of Endodontics. 2006; 32 (11): 1053-6.
  • 45. Luczaj-Cepowicz E, Pawinska M, Marczuk-Kolada G, Leszczynska K, Waszkiel D. Antibacterial activity of two Mineral Trioxide Aggregate materials in vitro evaluation. Ann Acad Med Stetin. 2008; 54 (1):147-50.
  • 46. Hasan Zarrabi M, Javidi M, Naderinasab M, Gharechahi M. Comparative evaluation of antimicrobial activity of three cements: new endodontic cement [NEC], mineral trioxide aggregate [MTA] and Portland. J Oral Sci. 2009; 51 (3): 437-42.
  • 47. Razmi H, Aminsobhani M, Bolhari B, Shamshirgar F, Shahsavan S, Shamshiri AR. Calcium Enriched Mixture and Mineral Trioxide Aggregate Activities against Enterococcus Faecalis in Presence of Dentin. Iran Endod J. 2013; 8 (4):191-6.
  • 48. Donyavi Z, Heidari N, Khoshbin E, Shahriari S, Farhadian M, Yousefi Mashouf R, et al. Antibacterial activity of mineral trioxide aggregate, new endodontic cement, Retro MTA and Ortho MTA against common endodontic pathogens. IAJPS. 2017; 4 (12): 4720-8.
  • 49. Poggio C, Arciola CR, Beltrami R, Monaco A, Dagna A, Lombardini M, et al. Cytocompatibility and antibacterial properties of capping materials. Scientific World Journal. 2014; ID 181945: 10.
  • 50. Imazato S, Kuramoto A, Takahashi Y, Ebisu S, Peters MC, In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater. 2006; 22: 527-32.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Araştırma
Yazarlar

Elif Pınar Bakır 0000-0003-4011-5091

Şeyhmus Bakır 0000-0003-2048-3065

Samican Ünal 0000-0002-6486-1008

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 12 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

Vancouver Bakır EP, Bakır Ş, Ünal S. Comparison Of Antibacterial Effects Of Pulp Capping Materials. Selcuk Dent J. 2021;8(2):553-60.