Araştırma Makalesi
BibTex RIS Kaynak Göster

EFFECT OF THERMOCYCLING ON MECHANICAL AND SURFACE PROPERTIES OF THREE POSTERIOR RESTORATIVE MATERIALS

Yıl 2021, Cilt: 8 Sayı: 2, 352 - 358, 31.08.2021
https://doi.org/10.15311/selcukdentj.646987

Öz

Background:
To evaluate the mechanical and surface properties of two glass ionomer
restorative systems (EQUIA Fil, Ionostar Molar) and a resin composite (Charisma
Classic ) after thermocycling.

Methods:
Twenty disk-shaped samples were prepared from each material in teflon molds
according to manufacturer’s instructions. After the samples were stored in
distilled water at 37 0C for 24 h, microhardness and surface
roughness measurements were performed from each group and repeated after 5000
and 10000 thermocycling. Scanning electron microscopy examinations were also
performed. The data were analyzed by using Wilcoxon signed rank and Bonferroni
corrected multiple comparison tests.

Results: EQUIA
did not exhibit significant differences in its micohardness values after
thermocycling (
p >  0.0056). In contrast, Ionostar Molar and
Charisma Classic exhibited statistically significant decreases in baseline
microhardness after 5000 and 10000 thermocycling processes (each p <
0.0056). However, there were no significant differences between 5000 and 10000
thermocycling groups for Charisma Classic (p = 0.007).

Ionostar Molar exhibited no statistically significant differences between its
surface roughness values before and after thermocycling groups (
p > 0.0017). Similarly, there were no significant
differences between baseline and 5000 thermocycling groups for EQUIA and
Charisma Classic (
p > 0.0017). However, a
statistically significant increase was observed after 10000 thermocycles for
both of these two materials
(p < 0.001 and p = 0.002, respectively).

Conclusion: The
EQUIA and Ionostar Molar exhibited mechanical features similar to those of a
resin composite, and thus, represent promising materials for permanent
restorations.









Keywords: Glass
ionomer, scanning electron microscopy, surface
properties 

Kaynakça

  • 1. Gurgan S, Kutuk ZB, Ergin E, Oztas SS, Cakir FY. Four-year randomized clinical trial to evaluate the clinical performance of a glass ionomer restorative system. Oper Dent. 2015;40(2):134-43.
  • 2. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132(4):133-5.
  • 3. Costa CA, Ribeiro AP, Giro EM, Randall RC, Hebling J.. Pulp response after application of two resin modified glass ionomer cements (RMGICs) in deep cavities of prepared human teeth. Dent Mater. 2011;27(7):e158-70.
  • 4. Cehreli SB, Tirali RE, Yalcinkaya Z, Cehreli ZC.. Microleakage of newly developed glass carbomer cement in primary teeth. European journal of dentistry. 2013;7(1):15-21.
  • 5. Naasan MA, Watson TF. Conventional glass ionomers as posterior restorations. A status report for the American Journal of Dentistry. Am J Dent. 1998;11(1):36-45.
  • 6. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig. 2012;16(2):489-98.
  • 7. Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc Microanal. 2015;21(2):392-406.
  • 8. Moshaverinia M, Navas A, Jahedmanesh N, Shah KC, Moshaverinia A, Ansari S. Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J Prosthet Dent. 2019;122(2):154-9.
  • 9. Forte GAE. EQUIA Forte Bulk Fill,fluoride releasing, glass hybrid restorative system. 2019.October.15 [Available from: http://www.gcamerica.com/products/operatory/EQUIA_Forte/.
  • 10. Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14 Suppl:3-9.
  • 11. Diem VTK, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clinical oral investigations. 2014;18(3):753-9.
  • 12. Collado-González M, Pecci-Lloret MR, Tomás-Catalá CJ, et al. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dental Materials. 2018;34(6):932-43.
  • 13. Wilson AD. Resin-modified glass-ionomer cements. International Journal of Prosthodontics. 1990;3(5).
  • 14. McLean JW. The clinical use of glass-ionomer cements. Dent Clin North Am. 1992;36(3):693-711.
  • 15. Goldman M. Fracture properties of composite and glass ionomer dental restorative materials. Journal of biomedical materials research. 1985;19(7):771-83.
  • 16. Cattani-Lorente MA, Godin C, Meyer JM. Mechanical behavior of glass ionomer cements affected by long-term storage in water. Dent Mater. 1994;10(1):37-44.
  • 17. Papadogiannis Y, Helvatjoglou-Antoniadi M, Lakes R, et al. The creep behavior of glass-ionomer restorative materials. Dental Materials. 1991;7(1):40-3.
  • 18. Minami H, Hori S, Kurashige H, et al. Effects of thermal cycling on surface texture of restorative composite materials. Dental materials journal. 2007;26(3):316-22.
  • 19. Morresi AL, D'Amario M, Monaco A, et al. Effects of critical thermal cycling on the flexural strength of resin composites. J Oral Sci. 2015;57(2):137-43.
  • 20. Hirt T, Lutz F, Roulet JF. In vivo evaluation of occlusal wear of two experimental composites versus amalgam. Journal of oral rehabilitation. 1984;11(6):511-20.21. Sulong MZ, Aziz RA. Wear of materials used in dentistry: a review of the literature. J Prosthet Dent. 1990;63(3):342-9.
  • 22. Mueller HJ. Fracture toughness and fractography of dental cements, lining, build-up, and filling materials. Scanning microscopy. 1990;4(2):297-307.
  • 23. 桃井保子, 広崎国継, 河野篤, et al. Flexural properties of resin-modified “hybrid” glass-ionomers in comparison with conventional acid-base glass-ionomers. Dental Materials Journal. 1995;14(2):109-19,275.
  • 24. Dionysopoulos D, Tolidis K, Sfeikos T, et al. Evaluation of Surface Microhardness and Abrasion Resistance of Two Dental Glass Ionomer Cement Materials after Radiant Heat Treatment. Advances in Materials Science and Engineering. 2017;2017.
  • 25. Tyas MJ. Clinical evaluation of glass-ionomer cement restorations. Journal of Applied Oral Science. 2006;14(SPE):10-3.
  • 26. Crisp S, Lewis B, Wilson A. Characterization of glass-ionomer cements 1. Long term hardness and compressive strength. Journal of Dentistry. 1976;4(4):162-6.
  • 27. Gemalmaz D, Yoruc B, Ozcan M, et al. Effect of early water contact on solubility of glass ionomer luting cements. The Journal of prosthetic dentistry. 1998;80(4):474-8.
  • 28. Lohbauer U, Krämer N, Siedschlag G, et al. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating. American journal of dentistry. 2011;24(2):124-8.
  • 29. Aljamhan A, Platt J, Cook N, et al. Resin-coated glass ionomer cement abrasion and wear resistance. Journal of Dental Research. 2012;91.
  • 30. Bagheri R. Effect of G-Coat Plus on the properties of aesthetic restorations. Journal of Dental Research. 2012;91.
  • 31. Ernst C-P, Canbek K, Euler T, et al. In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing. Clinical oral investigations. 2004;8(3):130-8.
  • 32. Gale M, Darvell B. Thermal cycling procedures for laboratory testing of dental restorations. Journal of dentistry. 1999;27(2):89-99.
  • 33. Barcellos DC, Pucci CR, Torres CRG, et al. Effects of resinous monomers used in restorative dental modeling on the cohesive strength of composite resin. Journal of Adhesive Dentistry. 2008;10(5).
  • 34. Tuncer S, Demirci M, Tiryaki M, et al. The effect of a modeling resin and thermocycling on the surface hardness, roughness, and color of different resin composites. Journal of Esthetic and Restorative Dentistry. 2013;25(6):404-19.
  • 35. Al-Angari SS, Hara AT, Chu T-M, et al. Physicomechanical properties of a zinc-reinforced glass ionomer restorative material. Journal of oral science. 2014;56(1):11-6.
  • 36. Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clinical oral investigations. 2013;17(2):619-26.
  • 37. Holmgren CJ, Figueredo MC. Two decades of ART: improving on success through further research. Journal of Applied Oral Science. 2009;17(SPE):122-33.
  • 38. Koenraads H, Van der Kroon G, Frencken J. Compressive strength of two newly developed glass-ionomer materials for use with the Atraumatic Restorative Treatment (ART) approach in class II cavities. dental materials. 2009;25(4):551-6.
  • 39. Cornelio RB, Wikant A, Mjøsund H, et al. The influence of bis-EMA vs bis GMA on the degree of conversion and water susceptibility of experimental composite materials. Acta Odontologica Scandinavica. 2014;72(6):440-7.
  • 40. Souza RO, Özcan M, Michida SM, et al. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry. 2010;19(3):218-25.
  • 41. Kakaboura A, Fragouli M, Rahiotis C, et al. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. Journal of Materials Science: Materials in Medicine. 2007;18(1):155-63.
  • 42. Tanoue N, Matsumura H, Atsuta M, et al. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. The Journal of prosthetic dentistry. 2000;84(1):93-7.
  • 43. Bala O, Arisu HD, Yikilgan I, et al. Evaluation of surface roughness and hardness of different glass ionomer cements. European journal of dentistry. 2012;6(1):79.
  • 44. Raggio DP, Bonifácio CC, Bönecker M, et al. Effect of insertion method on knoop hardness of high viscous glass ionomer cements. Brazilian dental journal. 2010;21(5):439-45.
  • 45. Zhang M, Puska MA, Botelho MG, et al. Degree of conversion and leached monomers of urethane dimethacrylate-hydroxypropyl methacrylate-based dental resin systems. Journal of oral science. 2016;58(1):15-22.
  • 46. Øysæd H, Ruyter I. Water sorption and filler characteristics of composites for use in posterior teeth. Journal of dental research. 1986;65(11):1315-8.

ISISIAL DÖNGÜ İLE YAŞLANDIRMANIN ÜÇ POSTERIOR RESTORATİF MATERYALİN MEKANİK VE YÜZEY ÖZELLİKLERİ ÜZERİNE ETKİSİ

Yıl 2021, Cilt: 8 Sayı: 2, 352 - 358, 31.08.2021
https://doi.org/10.15311/selcukdentj.646987

Öz

Amaç:  İki cam iyonomer
restoratif sistem (EQUIA Fil, Ionostar Molar) 
ve bir kompozit rezinin  (Charisma
Classic ) mekanik ve yüzey özelliklerinin kıyaslanması

Gereç
ve Yöntemler:
Her materyalden 20
adet disk şeklinde örnek teflon kalıpta, üretici talimatları doğrultusunda
hazırlandı.  Örnekler distile suda 37 0C
de 24 saat bekletildikten sonra 10 örnekte mikrosertlik, 10 örnekte yüzey
pürüzlülük ölçümleri yapıldı ve ölçümler 5000 ve 10000 ısısal döngü sonrası
tekrar edildi. Tarama elektron mikroskopisi değerlendirmesi için her
materyalden üçer örnek daha hazırlandı. Veriler Wİlcoxon işaretli sıralar ve
Bonferroni düzeltmeli çoklu karşılaştırma testi kullanılarak değerlendirildi.

Bulgular: Equia ısısal döngü sonrası mikrosertliğinde anlamlı bir
değişim göstermemiştir (
p  > 
0.0056)
. Ionostar Molar ve
Charisma Classic ise 5000 ve 10000 ısısal döngü sonrası başlangıç
mikrosertliğine göre anlamlı azalma gözlenmiştir
(ikisi de; p < 0.0056). Ancak, Charisma Classic
materyalinin 5000 ve 10000 ısısal döngü sonrası mikrosertlik değerleri arasında
fark gözlenmemiştir (p = 0.007).  Yüzey
pürüzlülüğü değerlendirildiğinde, Ionostar Molar başlangıç ve ısısal döngü
sonrası grupları arasında anlamlı fark tespit edilmemiştir
(p >
0.0017
). Benzer şekilde, Equia ve
Charisma Classic gruplarında başlangıç ve 5000 ısısal döngü sonrası grupları
arasında istatistiksel anlamlı fark gözlenmemiştir (
p > 0.0017).  Ancak 10000 ısısal döngü sonrası
Equia ve Ionostar Molar gruplarında yüzey pürüzlülük değerleri başlangıç
değerlerine gore anlamlı derecede artmıştır 
(sırasıyla;
p <
0.001 ve
p
= 0.002).

Sonuç: Equia ve Ionostar Molar, rezin kompozite benzer mekanik
özellikler göstermiştir ve bu sebeple kalıcı restorasyonlarda kullanım için
ümit vaat etmektedir.









Anahtar
kelimeler:
Cam iyonomer,
tarayıcı elektron mikroskobisi, yüzey özellikleri 

Kaynakça

  • 1. Gurgan S, Kutuk ZB, Ergin E, Oztas SS, Cakir FY. Four-year randomized clinical trial to evaluate the clinical performance of a glass ionomer restorative system. Oper Dent. 2015;40(2):134-43.
  • 2. Wilson AD, Kent BE. A new translucent cement for dentistry. The glass ionomer cement. Br Dent J. 1972;132(4):133-5.
  • 3. Costa CA, Ribeiro AP, Giro EM, Randall RC, Hebling J.. Pulp response after application of two resin modified glass ionomer cements (RMGICs) in deep cavities of prepared human teeth. Dent Mater. 2011;27(7):e158-70.
  • 4. Cehreli SB, Tirali RE, Yalcinkaya Z, Cehreli ZC.. Microleakage of newly developed glass carbomer cement in primary teeth. European journal of dentistry. 2013;7(1):15-21.
  • 5. Naasan MA, Watson TF. Conventional glass ionomers as posterior restorations. A status report for the American Journal of Dentistry. Am J Dent. 1998;11(1):36-45.
  • 6. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig. 2012;16(2):489-98.
  • 7. Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc Microanal. 2015;21(2):392-406.
  • 8. Moshaverinia M, Navas A, Jahedmanesh N, Shah KC, Moshaverinia A, Ansari S. Comparative evaluation of the physical properties of a reinforced glass ionomer dental restorative material. J Prosthet Dent. 2019;122(2):154-9.
  • 9. Forte GAE. EQUIA Forte Bulk Fill,fluoride releasing, glass hybrid restorative system. 2019.October.15 [Available from: http://www.gcamerica.com/products/operatory/EQUIA_Forte/.
  • 10. Davidson CL. Advances in glass-ionomer cements. J Appl Oral Sci. 2006;14 Suppl:3-9.
  • 11. Diem VTK, Tyas MJ, Ngo HC, Phuong LH, Khanh ND. The effect of a nano-filled resin coating on the 3-year clinical performance of a conventional high-viscosity glass-ionomer cement. Clinical oral investigations. 2014;18(3):753-9.
  • 12. Collado-González M, Pecci-Lloret MR, Tomás-Catalá CJ, et al. Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells. Dental Materials. 2018;34(6):932-43.
  • 13. Wilson AD. Resin-modified glass-ionomer cements. International Journal of Prosthodontics. 1990;3(5).
  • 14. McLean JW. The clinical use of glass-ionomer cements. Dent Clin North Am. 1992;36(3):693-711.
  • 15. Goldman M. Fracture properties of composite and glass ionomer dental restorative materials. Journal of biomedical materials research. 1985;19(7):771-83.
  • 16. Cattani-Lorente MA, Godin C, Meyer JM. Mechanical behavior of glass ionomer cements affected by long-term storage in water. Dent Mater. 1994;10(1):37-44.
  • 17. Papadogiannis Y, Helvatjoglou-Antoniadi M, Lakes R, et al. The creep behavior of glass-ionomer restorative materials. Dental Materials. 1991;7(1):40-3.
  • 18. Minami H, Hori S, Kurashige H, et al. Effects of thermal cycling on surface texture of restorative composite materials. Dental materials journal. 2007;26(3):316-22.
  • 19. Morresi AL, D'Amario M, Monaco A, et al. Effects of critical thermal cycling on the flexural strength of resin composites. J Oral Sci. 2015;57(2):137-43.
  • 20. Hirt T, Lutz F, Roulet JF. In vivo evaluation of occlusal wear of two experimental composites versus amalgam. Journal of oral rehabilitation. 1984;11(6):511-20.21. Sulong MZ, Aziz RA. Wear of materials used in dentistry: a review of the literature. J Prosthet Dent. 1990;63(3):342-9.
  • 22. Mueller HJ. Fracture toughness and fractography of dental cements, lining, build-up, and filling materials. Scanning microscopy. 1990;4(2):297-307.
  • 23. 桃井保子, 広崎国継, 河野篤, et al. Flexural properties of resin-modified “hybrid” glass-ionomers in comparison with conventional acid-base glass-ionomers. Dental Materials Journal. 1995;14(2):109-19,275.
  • 24. Dionysopoulos D, Tolidis K, Sfeikos T, et al. Evaluation of Surface Microhardness and Abrasion Resistance of Two Dental Glass Ionomer Cement Materials after Radiant Heat Treatment. Advances in Materials Science and Engineering. 2017;2017.
  • 25. Tyas MJ. Clinical evaluation of glass-ionomer cement restorations. Journal of Applied Oral Science. 2006;14(SPE):10-3.
  • 26. Crisp S, Lewis B, Wilson A. Characterization of glass-ionomer cements 1. Long term hardness and compressive strength. Journal of Dentistry. 1976;4(4):162-6.
  • 27. Gemalmaz D, Yoruc B, Ozcan M, et al. Effect of early water contact on solubility of glass ionomer luting cements. The Journal of prosthetic dentistry. 1998;80(4):474-8.
  • 28. Lohbauer U, Krämer N, Siedschlag G, et al. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating. American journal of dentistry. 2011;24(2):124-8.
  • 29. Aljamhan A, Platt J, Cook N, et al. Resin-coated glass ionomer cement abrasion and wear resistance. Journal of Dental Research. 2012;91.
  • 30. Bagheri R. Effect of G-Coat Plus on the properties of aesthetic restorations. Journal of Dental Research. 2012;91.
  • 31. Ernst C-P, Canbek K, Euler T, et al. In vivo validation of the historical in vitro thermocycling temperature range for dental materials testing. Clinical oral investigations. 2004;8(3):130-8.
  • 32. Gale M, Darvell B. Thermal cycling procedures for laboratory testing of dental restorations. Journal of dentistry. 1999;27(2):89-99.
  • 33. Barcellos DC, Pucci CR, Torres CRG, et al. Effects of resinous monomers used in restorative dental modeling on the cohesive strength of composite resin. Journal of Adhesive Dentistry. 2008;10(5).
  • 34. Tuncer S, Demirci M, Tiryaki M, et al. The effect of a modeling resin and thermocycling on the surface hardness, roughness, and color of different resin composites. Journal of Esthetic and Restorative Dentistry. 2013;25(6):404-19.
  • 35. Al-Angari SS, Hara AT, Chu T-M, et al. Physicomechanical properties of a zinc-reinforced glass ionomer restorative material. Journal of oral science. 2014;56(1):11-6.
  • 36. Zoergiebel J, Ilie N. Evaluation of a conventional glass ionomer cement with new zinc formulation: effect of coating, aging and storage agents. Clinical oral investigations. 2013;17(2):619-26.
  • 37. Holmgren CJ, Figueredo MC. Two decades of ART: improving on success through further research. Journal of Applied Oral Science. 2009;17(SPE):122-33.
  • 38. Koenraads H, Van der Kroon G, Frencken J. Compressive strength of two newly developed glass-ionomer materials for use with the Atraumatic Restorative Treatment (ART) approach in class II cavities. dental materials. 2009;25(4):551-6.
  • 39. Cornelio RB, Wikant A, Mjøsund H, et al. The influence of bis-EMA vs bis GMA on the degree of conversion and water susceptibility of experimental composite materials. Acta Odontologica Scandinavica. 2014;72(6):440-7.
  • 40. Souza RO, Özcan M, Michida SM, et al. Conversion degree of indirect resin composites and effect of thermocycling on their physical properties. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry. 2010;19(3):218-25.
  • 41. Kakaboura A, Fragouli M, Rahiotis C, et al. Evaluation of surface characteristics of dental composites using profilometry, scanning electron, atomic force microscopy and gloss-meter. Journal of Materials Science: Materials in Medicine. 2007;18(1):155-63.
  • 42. Tanoue N, Matsumura H, Atsuta M, et al. Wear and surface roughness of current prosthetic composites after toothbrush/dentifrice abrasion. The Journal of prosthetic dentistry. 2000;84(1):93-7.
  • 43. Bala O, Arisu HD, Yikilgan I, et al. Evaluation of surface roughness and hardness of different glass ionomer cements. European journal of dentistry. 2012;6(1):79.
  • 44. Raggio DP, Bonifácio CC, Bönecker M, et al. Effect of insertion method on knoop hardness of high viscous glass ionomer cements. Brazilian dental journal. 2010;21(5):439-45.
  • 45. Zhang M, Puska MA, Botelho MG, et al. Degree of conversion and leached monomers of urethane dimethacrylate-hydroxypropyl methacrylate-based dental resin systems. Journal of oral science. 2016;58(1):15-22.
  • 46. Øysæd H, Ruyter I. Water sorption and filler characteristics of composites for use in posterior teeth. Journal of dental research. 1986;65(11):1315-8.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Hekimliği
Bölüm Araştırma
Yazarlar

Sinem Akgül

Ahmet Hazar Bu kişi benim 0000-0002-3931-5179

İhsan Yıkılgan 0000-0001-9998-6057

Suat Özcan 0000-0001-8782-2899

Mine Betül Üçtaşlı 0000-0002-5670-6921

Oya Bala 0000-0001-5446-2583

Yayımlanma Tarihi 31 Ağustos 2021
Gönderilme Tarihi 14 Kasım 2019
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 2

Kaynak Göster

Vancouver Akgül S, Hazar A, Yıkılgan İ, Özcan S, Üçtaşlı MB, Bala O. EFFECT OF THERMOCYCLING ON MECHANICAL AND SURFACE PROPERTIES OF THREE POSTERIOR RESTORATIVE MATERIALS. Selcuk Dent J. 2021;8(2):352-8.