Research Article
BibTex RIS Cite

Yeni Geliştirilen Bir Akışkan Rezin Kompozitin Dönüşüm Derecesi, Eğilme Dayanımı ve Mikrosertliğinin Değerlendirilmesi

Year 2025, Volume: 12 Issue: 2, 202 - 207, 22.08.2025
https://doi.org/10.15311/selcukdentj.1568695

Abstract

Amaç: Bu in vitro çalışmanın amacı, yeni geliştirilen bir akışkan rezin kompozitin dönüşüm derecesini, eğilme dayanımını ve mikrosertliğini karşılaştırmak, dönüşüm derecesini değerlendirmektir.
Gereç ve Yöntemler: ZENIFLOW (hacimce %65 doldurucu oranı) ve Dynamic flow (hacimce %60 doldurucu oranı) rezin kompozitler (President, Almanya) eğilme dayanımı (FS) ve elastisite modülünü (FM) belirlemek için üç nokta eğme testine (n=10) tabi tutuldu, Vickers mikrosertlik değerleri (VHN) (n=5) ve sertlik oranı (HR) alt/üst yüzeylerden mikrosertlik test cihazı ile 37ºC'de distile suda 15 gün bekletildikten sonra belirlendi. Dönüşüm derecesi (DC), Fourier Dönüşümlü Kızılötesi Spektroskopisi (FTIR) kullanılarak değerlendirildi (n=5). Tüm örnekler 20 saniye süreyle 1000 mW/cm2 güçte LED ışık cihazı (Valo Cordless, Ultradent) ile polimerize edildi. Polisaj prosedürleri 4 aşamalı bitim diskleri (BISCO, ABD) ile gerçekleştirildi. Eğilme dayanımı değerlendirmesinin ardından oluşan kırık yüzeyler stereomikroskop (Leica MZ7.5, Almanya) ve Taramalı Elektron Mikroskobu (SEM) (Zeiss EVO MA10, Almanya) ile incelendi. Değerleri gruplara göre karşılaştırmak için bağımsız örneklem t-testi kullanıldı. Anlamlılık düzeyi p<0,05 olarak belirlendi.
Bulgular: Farklı doldurucu oranlarına sahip iki rezin kompozit arasında dönüşüm derecesi, mikrosertlik değeri, sertlik oranı, eğilme dayanımı ve elastisite modülü açısından anlamlı bir fark bulunmadı.
Sonuç: Doldurucu oranında hacimce %5'lik bir artış, dönüşüm derecesini ve rezin kompozitin test edilen mekanik özelliklerini değiştirmedi.

Ethical Statement

Bu çalışmada etik kurul onayına gerek yoktur.

Supporting Institution

Destekleyen kurum yoktur.

References

  • 1. Lynch CD, Opdam NJ, Hickel R, et al. Guidance on posterior resin composites: Academy of operative dentistry-European section. J Dent. 2014;42(4):377-383.
  • 2. Van E nde A , D e M unck J , L ise D P, V an M eerbeek B . B ulk-fill composites: a review of the current literature. J Adhes Dent. 2017;19(2):95-109.
  • 3. Suryawanshi A, Behera N. Dental composite resin: a review of major mechanical properties, measurements and its influencing factors. Mater Werkst. 2022;53(5):617-635.
  • 4. Algamaiah H, Danso R, Banas J, et al. The effect of aging methods on the fracture toughness and physical stability of an oxirane/acrylate, ormocer, and Bis-GMA-based resin composites. Clin Oral Investig. 2020; 24:369-375.
  • 5. Elkaffass A-A, Eltoukhy R-I, Mahmoud S-H. Influence of preheating on mechanical and surface properties of nanofilled resin composites. J Clin Exp Dent. 2020;12(5): e494.
  • 6. Yılmaz Atalı P, Doğu Kaya B, Manav Özen A, et al. Assessment of micro-hardness, degree of conversion, and flexural strength for single-shade universal resin composites. Polymers. 2022;14(22):4987.
  • 7. Taher RM, Moharam LM, Amin AE, Zaazou MH, El-Askary FS, Ibrahim MN. T he e ffect of r adiation e xposure a nd s torage t ime o n t he degree of conversion and flexural strength of different resin composites. Bull Natl Res Cent. 2021; 45:1-11.
  • 8. de Jager N, Münker T J, G uilardi L F, J ansen V J, S portel Y G, Kleverlaan CJ. The relation between impact strength and flexural strength of dental materials. J Mech Behav Biomed Mater. 2021; 122:104658.
  • 9. Machello C, Bazli M, Santos J, Rajabipour A, Arashpour M, Hassanli R. Tensile strength retention of fibre-reinforced polymer composites exposed to elevated temperatures: A meta-analysis review. Constr Build Mater. 2024; 438:137150.
  • 10. Boussès Y, Brulat-Bouchard N, Bouchard P-O, Abouelleil H, Tillier Y. Theoretical prediction of dental composites yield stress and flexural modulus based on filler volume ratio. Dent Mater. 2020;36(1):97-107.
  • 11. Rodrigues Junior SA, Zanchi CH, Carvalho RVd, Demarco FF. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res. 2007; 21:16-21.
  • 12. Rada R. The versatility of flowable composites. Dent Today. 1998;17(4):78-83.
  • 13. Bayne SC, Thompson JY, Swift Jr EJ, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. The J Am Dent Assoc. 1998;129(5):567-577.
  • 14. Basheer RR, Hasanain FA, Abuelenain DA. Evaluating flexure properties, hardness, roughness and microleakage of high-strength injectable dental composite: an in vitro study. BMC Oral Health. 2024;24(1):546.
  • 15. Sumino N, Tsubota K, Takamizawa T, Shiratsuchi K, Miyazaki M, Latta MA. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol Scand. 2013;71(3-4):820-827.
  • 16. Bonilla ED, Stevenson RG, Caputo AA, White SN. Microleakage resistance of minimally invasive Class I flowable composite restorations. Oper Dent. 2012;37(3):290-298.
  • 17. Doğu B, Acar E, Farshıdıan N, Göçmen GB, Tarçın B, Atalı PY. The Effect of Cavity Disinfectant on Microleakage of Self-adhesive Composite Restorations in Class V Cavities. Eur J Res Dent. 2023;7(3):115-121.
  • 18. Celik C , Ö zgünaltay G , A ttar N . C linical e valuation of f lowable resins in non-carious cervical lesions: two-year results. Oper Dent. 2007;32(4):313-321.
  • 19. Tsujimoto A, Irie M, Teixeira ECN, et al. Relationships between flexural and bonding properties, marginal adaptation, and polymerization shrinkage in flowable composite restorations for dental application. Polymers. 2021;13(16):2613.
  • 20. Moldovan M, Balazsi R, Soanca A, et al. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials. 2019;12(13):2109.
  • 21. Cramer N, Stansbury J, Bowman C. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402-416.
  • 22. Kwaśny M, Polkowski J, Bombalska A. A study on the photopolymerization kinetics of selected dental resins using Fourier Infrared Spectroscopy (FTIR). Materials. 2022;15(17):5850.
  • 23. Siagian JS, Dennis D, Ikhsan T, Abidin T. Effect of different LED light-curing units on degree of conversion and microhardness of bulk-fill composite resin. J Contemp Dent Pract. 2020;21(6):615- 20.
  • 24. Mayworm CD, Camargo Jr SS, Bastian FL. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J Dent. 2008;36(9):703-710.
  • 25. Elkaffas AA, Eltoukhy RI, Elnegoly SA, Mahmoud SH. The effect of preheating resin composites on surface hardness: a systematic review and meta-analysis. Restor Dent Endodcs. 2019;44(4)
  • 26. Aljabo A, Xia W, Liaqat S, et al. Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dent Mater. 2015;31(11):1279-1289.
  • 27. Bilge K, İpek İ. Effects of different LED light curing units on the degree of conversion and microhardness of different composites: FT-IR and SEM-EDX analysis. Polym Bull. 2024:1-14.
  • 28. Cho K, R ajan G , F arrar P , P rentice L , P rusty B G. D ental r esin composites: A review on materials to product realizations. Compos B Eng. 2022; 230:109495.
  • 29. Marović D, Šariri K, Demoli N, et al. Remineralizing amorphous calcium phosphate based composite resins: The influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness. Croat Med J. 2016;57(5):465-473.
  • 30. Jang J-H, Lee MG, Ferracane JL, et al. Effect of bioactive glasscontaining resin composite on dentin remineralization. J Dent. 2018; 75:58-64.
  • 31. de Freitas Guimarães GM, Bronze-Uhle ES, Lisboa-Filho PN, et al. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites. Dent Mater. 2020;36(12):1544-1556.
  • 32. Borges MG, Silva GR, Neves FT, et al. Oxygen inhibition of surface composites and its correlation with degree of conversion and color stability. Braz Dent J. 2021; 32:91-97.
  • 33. Özduman ZC, Oglakci B, Halacoglu Bagis DM, Aydogan Temel B, Eliguzeloglu Dalkilic E. Comparison of a nanofiber-reinforced composite with different types of composite resins. Polymers. 2023;15(17):3628.
  • 34. Matheel A-R, Johari Y, Mohamad D, et al. Water sorption, solubility, degree of conversion, and surface hardness and topography of flowable composite utilizing nano silica from rice husk. J Mater Res Technol. 2021; 15:4173-4184.
  • 35. Elfakhri F, Alkahtani R, Li C, Khaliq J. Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceram Int. 2022;48(19):27280-27294.
  • 36. Wang Y, Zhu M, Zhu X. Functional fillers for dental resin composites. Acta Biomater. 2021; 122:50-65.
  • 37. Habib E, Wang R, Wang Y, Zhu M, Zhu X. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2016;2(1):1-11.
  • 38. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32(12):1586-1599.
  • 39. Randolph LD, Palin WM, Leprince JG. Developing a more appropriate classification system for modern resin-based composite technologies. Dental Composite Materials for Direct Restorations. 2018:89-96.
  • 40. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig. 2012; 16:489- 498.
  • 41. Mirică I-C, Furtos G, Bâldea B, et al. Influence of filler loading on the mechanical properties of flowable resin composites. Materials. 2020;13(6):1477.
  • 42. Gonçalves F , A zevedo C L, F erracane J L, B raga R R. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011;27(6):520-526.
  • 43. Mota EG, Weiss A, Spohr AM, Oshima HMS, Carvalho LMNd. Relationship between filler content and selected mechanical properties of six microhybrid composites. Rev Odonto Ciênc. 2011; 26:151-155.
  • 44. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29(9): e213-e217.
  • 45. Amirouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater. 2009;25(11):1411-1418.
  • 46. Wang R, Wang Y. Depth-dependence of Degree of Conversion and Microhardness for Dual-cure and Light-cure Composites. Oper Dent. 2020;45(4):396-406.
  • 47. Aung SZ, Takagaki T, Ikeda M, et al. The effect of different light curing units on Vickers microhardness and degree of conversion of flowable resin composites. Dental materials journal. 2021;40(1):44-51.
  • 48. de Mendonça BC, Soto‐Montero JR, de Castro EF, Pecorari VGA, Rueggeberg FA, Giannini M. Flexural strength and microhardness of bulk‐fill restorative materials. J Esthet Restor Dent. 2021;33(4):628-635.

Evaluation of Degree of Conversion, Flexural Strength, and Microhardness of a Novel Flowable Resin Composite

Year 2025, Volume: 12 Issue: 2, 202 - 207, 22.08.2025
https://doi.org/10.15311/selcukdentj.1568695

Abstract

Aim: This in vitro study aimed to compare the degree of conversion, flexural strength, and microhardness of a recently developed flowable resin composite in clinical use and to evaluate polymerization and mechanical characteristics.
Materials & Methods: ZENIFLOW (65% filler ratio by volume) and Dynamic flow (60% filler ratio by volume) composites (President, Germany) were subjected to a three-point bending test (n=10) to determine flexural strength (FS) and flexural modulus (FM); Vickers micro-hardness (VHN) (n=5) and hardness-ratio (HR) were determined with a microhardness tester from bottom/top surfaces after 15-days of storage in distilled water at 37ºC. The degree of conversion (DC) was assessed by using Fourier Transform Infrared Spectroscopy (FTIR) (n=5). All samples were polymerized with a polywave LED curing unit with 1000 mW/cm2 (Valo Cordless, Ultradent) for 20 s. Polishing procedures were performed with 4-step polishing discs (BISCO, USA). The fractured surfaces formed after flexural strength assessment were examined with a stereomicroscope (Leica MZ7.5, Germany) and a Scanning Electron Microscope (SEM) (Zeiss EVO MA10, Germany). Independent samples t-test was used to compare the values according to the groups. The significance level was set at p<0.05.
Results: There was no significant difference between the two resin composites with different filler ratios in terms of degree of conversion, microhardness, hardness ratio, flexural strength, and flexural modulus.
Conclusion: A 5% increase in the volume of filler content did not alter the degree of conversion and the tested mechanical properties of the resin composite.

Ethical Statement

NA.

References

  • 1. Lynch CD, Opdam NJ, Hickel R, et al. Guidance on posterior resin composites: Academy of operative dentistry-European section. J Dent. 2014;42(4):377-383.
  • 2. Van E nde A , D e M unck J , L ise D P, V an M eerbeek B . B ulk-fill composites: a review of the current literature. J Adhes Dent. 2017;19(2):95-109.
  • 3. Suryawanshi A, Behera N. Dental composite resin: a review of major mechanical properties, measurements and its influencing factors. Mater Werkst. 2022;53(5):617-635.
  • 4. Algamaiah H, Danso R, Banas J, et al. The effect of aging methods on the fracture toughness and physical stability of an oxirane/acrylate, ormocer, and Bis-GMA-based resin composites. Clin Oral Investig. 2020; 24:369-375.
  • 5. Elkaffass A-A, Eltoukhy R-I, Mahmoud S-H. Influence of preheating on mechanical and surface properties of nanofilled resin composites. J Clin Exp Dent. 2020;12(5): e494.
  • 6. Yılmaz Atalı P, Doğu Kaya B, Manav Özen A, et al. Assessment of micro-hardness, degree of conversion, and flexural strength for single-shade universal resin composites. Polymers. 2022;14(22):4987.
  • 7. Taher RM, Moharam LM, Amin AE, Zaazou MH, El-Askary FS, Ibrahim MN. T he e ffect of r adiation e xposure a nd s torage t ime o n t he degree of conversion and flexural strength of different resin composites. Bull Natl Res Cent. 2021; 45:1-11.
  • 8. de Jager N, Münker T J, G uilardi L F, J ansen V J, S portel Y G, Kleverlaan CJ. The relation between impact strength and flexural strength of dental materials. J Mech Behav Biomed Mater. 2021; 122:104658.
  • 9. Machello C, Bazli M, Santos J, Rajabipour A, Arashpour M, Hassanli R. Tensile strength retention of fibre-reinforced polymer composites exposed to elevated temperatures: A meta-analysis review. Constr Build Mater. 2024; 438:137150.
  • 10. Boussès Y, Brulat-Bouchard N, Bouchard P-O, Abouelleil H, Tillier Y. Theoretical prediction of dental composites yield stress and flexural modulus based on filler volume ratio. Dent Mater. 2020;36(1):97-107.
  • 11. Rodrigues Junior SA, Zanchi CH, Carvalho RVd, Demarco FF. Flexural strength and modulus of elasticity of different types of resin-based composites. Braz Oral Res. 2007; 21:16-21.
  • 12. Rada R. The versatility of flowable composites. Dent Today. 1998;17(4):78-83.
  • 13. Bayne SC, Thompson JY, Swift Jr EJ, Stamatiades P, Wilkerson M. A characterization of first-generation flowable composites. The J Am Dent Assoc. 1998;129(5):567-577.
  • 14. Basheer RR, Hasanain FA, Abuelenain DA. Evaluating flexure properties, hardness, roughness and microleakage of high-strength injectable dental composite: an in vitro study. BMC Oral Health. 2024;24(1):546.
  • 15. Sumino N, Tsubota K, Takamizawa T, Shiratsuchi K, Miyazaki M, Latta MA. Comparison of the wear and flexural characteristics of flowable resin composites for posterior lesions. Acta Odontol Scand. 2013;71(3-4):820-827.
  • 16. Bonilla ED, Stevenson RG, Caputo AA, White SN. Microleakage resistance of minimally invasive Class I flowable composite restorations. Oper Dent. 2012;37(3):290-298.
  • 17. Doğu B, Acar E, Farshıdıan N, Göçmen GB, Tarçın B, Atalı PY. The Effect of Cavity Disinfectant on Microleakage of Self-adhesive Composite Restorations in Class V Cavities. Eur J Res Dent. 2023;7(3):115-121.
  • 18. Celik C , Ö zgünaltay G , A ttar N . C linical e valuation of f lowable resins in non-carious cervical lesions: two-year results. Oper Dent. 2007;32(4):313-321.
  • 19. Tsujimoto A, Irie M, Teixeira ECN, et al. Relationships between flexural and bonding properties, marginal adaptation, and polymerization shrinkage in flowable composite restorations for dental application. Polymers. 2021;13(16):2613.
  • 20. Moldovan M, Balazsi R, Soanca A, et al. Evaluation of the degree of conversion, residual monomers and mechanical properties of some light-cured dental resin composites. Materials. 2019;12(13):2109.
  • 21. Cramer N, Stansbury J, Bowman C. Recent advances and developments in composite dental restorative materials. J Dent Res. 2011;90(4):402-416.
  • 22. Kwaśny M, Polkowski J, Bombalska A. A study on the photopolymerization kinetics of selected dental resins using Fourier Infrared Spectroscopy (FTIR). Materials. 2022;15(17):5850.
  • 23. Siagian JS, Dennis D, Ikhsan T, Abidin T. Effect of different LED light-curing units on degree of conversion and microhardness of bulk-fill composite resin. J Contemp Dent Pract. 2020;21(6):615- 20.
  • 24. Mayworm CD, Camargo Jr SS, Bastian FL. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J Dent. 2008;36(9):703-710.
  • 25. Elkaffas AA, Eltoukhy RI, Elnegoly SA, Mahmoud SH. The effect of preheating resin composites on surface hardness: a systematic review and meta-analysis. Restor Dent Endodcs. 2019;44(4)
  • 26. Aljabo A, Xia W, Liaqat S, et al. Conversion, shrinkage, water sorption, flexural strength and modulus of re-mineralizing dental composites. Dent Mater. 2015;31(11):1279-1289.
  • 27. Bilge K, İpek İ. Effects of different LED light curing units on the degree of conversion and microhardness of different composites: FT-IR and SEM-EDX analysis. Polym Bull. 2024:1-14.
  • 28. Cho K, R ajan G , F arrar P , P rentice L , P rusty B G. D ental r esin composites: A review on materials to product realizations. Compos B Eng. 2022; 230:109495.
  • 29. Marović D, Šariri K, Demoli N, et al. Remineralizing amorphous calcium phosphate based composite resins: The influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness. Croat Med J. 2016;57(5):465-473.
  • 30. Jang J-H, Lee MG, Ferracane JL, et al. Effect of bioactive glasscontaining resin composite on dentin remineralization. J Dent. 2018; 75:58-64.
  • 31. de Freitas Guimarães GM, Bronze-Uhle ES, Lisboa-Filho PN, et al. Effect of the addition of functionalized TiO2 nanotubes and nanoparticles on properties of experimental resin composites. Dent Mater. 2020;36(12):1544-1556.
  • 32. Borges MG, Silva GR, Neves FT, et al. Oxygen inhibition of surface composites and its correlation with degree of conversion and color stability. Braz Dent J. 2021; 32:91-97.
  • 33. Özduman ZC, Oglakci B, Halacoglu Bagis DM, Aydogan Temel B, Eliguzeloglu Dalkilic E. Comparison of a nanofiber-reinforced composite with different types of composite resins. Polymers. 2023;15(17):3628.
  • 34. Matheel A-R, Johari Y, Mohamad D, et al. Water sorption, solubility, degree of conversion, and surface hardness and topography of flowable composite utilizing nano silica from rice husk. J Mater Res Technol. 2021; 15:4173-4184.
  • 35. Elfakhri F, Alkahtani R, Li C, Khaliq J. Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceram Int. 2022;48(19):27280-27294.
  • 36. Wang Y, Zhu M, Zhu X. Functional fillers for dental resin composites. Acta Biomater. 2021; 122:50-65.
  • 37. Habib E, Wang R, Wang Y, Zhu M, Zhu X. Inorganic fillers for dental resin composites: present and future. ACS Biomater Sci Eng. 2016;2(1):1-11.
  • 38. Randolph LD, Palin WM, Leloup G, Leprince JG. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016;32(12):1586-1599.
  • 39. Randolph LD, Palin WM, Leprince JG. Developing a more appropriate classification system for modern resin-based composite technologies. Dental Composite Materials for Direct Restorations. 2018:89-96.
  • 40. Ilie N, Hickel R, Valceanu AS, Huth KC. Fracture toughness of dental restorative materials. Clin Oral Investig. 2012; 16:489- 498.
  • 41. Mirică I-C, Furtos G, Bâldea B, et al. Influence of filler loading on the mechanical properties of flowable resin composites. Materials. 2020;13(6):1477.
  • 42. Gonçalves F , A zevedo C L, F erracane J L, B raga R R. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dent Mater. 2011;27(6):520-526.
  • 43. Mota EG, Weiss A, Spohr AM, Oshima HMS, Carvalho LMNd. Relationship between filler content and selected mechanical properties of six microhybrid composites. Rev Odonto Ciênc. 2011; 26:151-155.
  • 44. Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional resin-composites at two time intervals. Dent Mater. 2013;29(9): e213-e217.
  • 45. Amirouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater. 2009;25(11):1411-1418.
  • 46. Wang R, Wang Y. Depth-dependence of Degree of Conversion and Microhardness for Dual-cure and Light-cure Composites. Oper Dent. 2020;45(4):396-406.
  • 47. Aung SZ, Takagaki T, Ikeda M, et al. The effect of different light curing units on Vickers microhardness and degree of conversion of flowable resin composites. Dental materials journal. 2021;40(1):44-51.
  • 48. de Mendonça BC, Soto‐Montero JR, de Castro EF, Pecorari VGA, Rueggeberg FA, Giannini M. Flexural strength and microhardness of bulk‐fill restorative materials. J Esthet Restor Dent. 2021;33(4):628-635.
There are 48 citations in total.

Details

Primary Language English
Subjects Restorative Dentistry
Journal Section Research
Authors

Bengü Doğu Kaya 0000-0002-3116-2016

Selinsu Öztürk 0000-0003-0339-7501

Nazlı Zeynep Kuzu 0009-0002-0266-3695

Ayşe Aslı Şenol 0000-0003-3542-4877

Erkut Kahramanoğlu 0000-0002-2583-6627

Pınar Yılmaz Atalı 0000-0003-3121-360X

Bilge Tarçın 0000-0002-9220-8671

Publication Date August 22, 2025
Submission Date October 17, 2024
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

Vancouver Doğu Kaya B, Öztürk S, Kuzu NZ, Şenol AA, Kahramanoğlu E, Yılmaz Atalı P, et al. Evaluation of Degree of Conversion, Flexural Strength, and Microhardness of a Novel Flowable Resin Composite. Selcuk Dent J. 2025;12(2):202-7.