Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 37 Sayı: 4, 1325 - 1333, 01.12.2019

Öz

Kaynakça

  • [1] Andrews G. E., (1994) Number Theory, first ed., Dover Publications, Inc., New York,
  • [2] Bonnecaze A., Solé P. and Calderbank A. R., (1995) Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 2, 41,366–377.
  • [3] Heden, O., (2011) The non-existence of some perfect codes over non-prime power alphabets, Discrete Math. 311, 14, 1344–1348.
  • [4] Horak P., (2009) On perfect Lee codes, Discrete Math. 309, 18, 5551–5561.
  • [5] Jain, S., Nam K. B. and Lee K. S. (2005) On some perfect codes with respect to Lee metric, Linear Algebra Appl. 405, 104–120.
  • [6] Lee, C.Y., (1958) Some properties of non-binary error correcting codes, IEEE Trans. Information Theory 4, 2, 77–82.
  • [7] van Lint J. H., (1975) A survey of perfect codes, Rocky Mountain J. Math. 5, 199–226.
  • [8] Malyugin S. A., (2004) On a lower bound on the number of perfect binary codes, Discrete Appl. Math. 135,1-3, 157–160.
  • [9] Özen M. and Şiap V., (2012) On the existence of perfect linear codes over Z_4 with respect to homogenous weight, Appl. Math. Sci. 6 no. 41, 2005–2011.
  • [10] Siap I., Özen M. and Şiap V., (2013) On the existence of perfect linear codes over Z_(2l) with respect to homogenous metric, Arabian Journal for Science and Engineering 38 ,8, 2189–2192.
  • [11] Tietäväinen A., (1973), On the nonexistence of perfect codes over finite fields, SIAM J. Appl. Math. 24 ,1, 88–96.
  • [12] Ungerboeck G., (1982) Channel coding with multilevel/phase signals, IEEE Trans. Information Theory 28,1, 55–67.
  • [13] Rosenbloom M.Yu. and Tsfasman M.A., (1997) Codes for m-metric, Problems of Information Transmission 33 ,45–52.

ON PERFECT CODES IN THE LEE-ROSENBLOOM-TSFASMAN-JAIN METRIC

Yıl 2019, Cilt: 37 Sayı: 4, 1325 - 1333, 01.12.2019

Öz

In this paper, we study perfect codes in the Lee-Rosenbloom-Tsfasman-Jain (LRTJ) metric over the finite field Z_p. We begin by deriving some new upper bounds focusing on the number of parity check digits for linear codes correcting all error vectors of LRTJ weight up to w, 1≤w≤4. Furthermore, we establish sufficient conditions for the existence of perfect codes correcting all error vectors with certain weights. We also search for linear codes which attain these bounds to determine the possible parameters of perfect codes. Moreover, we derive parity check matrices corresponding linear codes correcting all error vectors of LRTJ weight 1 over Z_p, and correcting all error vectors of LRTJ weight up to 2 over Z_3 and Z_11. We also construct perfect codes for these cases. Lastly, we obtain non-existence results on w-perfect linear codes over Z_p for 2≤w≤4.

Kaynakça

  • [1] Andrews G. E., (1994) Number Theory, first ed., Dover Publications, Inc., New York,
  • [2] Bonnecaze A., Solé P. and Calderbank A. R., (1995) Quaternary quadratic residue codes and unimodular lattices, IEEE Trans. Inform. Theory 2, 41,366–377.
  • [3] Heden, O., (2011) The non-existence of some perfect codes over non-prime power alphabets, Discrete Math. 311, 14, 1344–1348.
  • [4] Horak P., (2009) On perfect Lee codes, Discrete Math. 309, 18, 5551–5561.
  • [5] Jain, S., Nam K. B. and Lee K. S. (2005) On some perfect codes with respect to Lee metric, Linear Algebra Appl. 405, 104–120.
  • [6] Lee, C.Y., (1958) Some properties of non-binary error correcting codes, IEEE Trans. Information Theory 4, 2, 77–82.
  • [7] van Lint J. H., (1975) A survey of perfect codes, Rocky Mountain J. Math. 5, 199–226.
  • [8] Malyugin S. A., (2004) On a lower bound on the number of perfect binary codes, Discrete Appl. Math. 135,1-3, 157–160.
  • [9] Özen M. and Şiap V., (2012) On the existence of perfect linear codes over Z_4 with respect to homogenous weight, Appl. Math. Sci. 6 no. 41, 2005–2011.
  • [10] Siap I., Özen M. and Şiap V., (2013) On the existence of perfect linear codes over Z_(2l) with respect to homogenous metric, Arabian Journal for Science and Engineering 38 ,8, 2189–2192.
  • [11] Tietäväinen A., (1973), On the nonexistence of perfect codes over finite fields, SIAM J. Appl. Math. 24 ,1, 88–96.
  • [12] Ungerboeck G., (1982) Channel coding with multilevel/phase signals, IEEE Trans. Information Theory 28,1, 55–67.
  • [13] Rosenbloom M.Yu. and Tsfasman M.A., (1997) Codes for m-metric, Problems of Information Transmission 33 ,45–52.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Merve Bulut Yılgör 0000-0001-6842-1109

Fatih Demirkale Bu kişi benim 0000-0002-6114-1291

Yayımlanma Tarihi 1 Aralık 2019
Gönderilme Tarihi 18 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 37 Sayı: 4

Kaynak Göster

Vancouver Bulut Yılgör M, Demirkale F. ON PERFECT CODES IN THE LEE-ROSENBLOOM-TSFASMAN-JAIN METRIC. SIGMA. 2019;37(4):1325-33.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/