Research Article
BibTex RIS Cite

INVESTIGATION OF MICROPOLAR FLUID FLOW AND HEAT TRANSFER IN A TWO-DIMENSIONAL PERMEABLE CHANNEL BY ANALYTICAL AND NUMERICAL METHODS

Year 2019, Volume: 37 Issue: 2, 393 - 413, 01.06.2019

Abstract

In this paper, we have used the Variational Iteration Method (VIM) to study micropolar fluid flow and heat transfer in a two-dimensional permeable channel. To check the precision of the obtained results, they have been compared with the results of Runge-Kutta Fourth-Order Method, Akbari-Ganji's Method (AGM), Collocation Method (CM), and Flex-PDE software. The influences of various parameters including microrotation/angular velocity, Peclet number (Pe), and Reynolds number (Re) on the flow, concentration, and heat transfer distribution are studied. Based on the results, Nusselt number (Nu) has a direct relation with Reynolds number and Sherwood number (Sh), while it has a reverse relation with Peclet number. In addition, by increasing Peclet number, concentration and temperature profiles increase as well. It is concluded that both VIM and AGM are powerful methods to solve nonlinear differential equations.

References

  • [1] Eringen, A. C. (1966). Theory of micropolar fluids. Journal of Mathematics and Mechanics, 1-18.
  • [2] Eringen, A. C. (1972). Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications, 38(2), 480-496.
  • [3] Ariman, T. M. A. N. D., Turk, M. A., & Sylvester, N. D. (1973). Microcontinuum fluid mechanics—a review. International Journal of Engineering Science, 11(8), 905-930.
  • [4] Lockwood, F. E., Benchaita, M. T., & Friberg, S. E. (1986). Study of lyotropic liquid crystals in viscometric flow and elastohydrodynamic contact. ASLE transactions, 30(4), 539-548.
  • [5] Eringen, A. C. (2001). Microcontinuum field theories: II. Fluent media (Vol. 2). Springer Science & Business Media.
  • [6] Lukaszewicz, G. (1999). Micropolar fluids: theory and applications. Springer Science & Business Media.
  • [7] Gorla, R. S. R., Pender, R., & Eppich, J. (1983). Heat transfer in micropolar boundary layer flow over a flat plate. International Journal of Engineering Science, 21(7), 791-798.
  • [8] Rees, D. A. S., & Bassom, A. P. (1996). The Blasius boundary-layer flow of a micropolar fluid. International Journal of Engineering Science, 34(1), 113-124.
  • [9] Kelson, N. A., & Desseaux, A. (2001). Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet. International Journal of Engineering Science, 39(16), 1881-1897.
  • [10] Bhargava, R., Kumar, L., & Takhar, H. S. (2003). Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet. International journal of engineering science, 41(18), 2161-2178.
  • [11] Nazar, R., Amin, N., Filip, D., & Pop, I. (2004). Stagnation point flow of a micropolar fluid towards a stretching sheet. International Journal of Non-Linear Mechanics, 39(7), 1227-1235.
  • [12] Joneidi, A. A., Ganji, D. D., & Babaelahi, M. (2009). Micropolar flow in a porous channel with high mass transfer. International Communications in Heat and Mass Transfer, 36(10), 1082-1088.
  • [13] Raptis, A. (1998). Flow of a micropolar fluid past a continuously moving plate by the presence of radiation. International Journal of Heat and Mass Transfer, 18(41), 2865-2866.
  • [14] Perdikis, C., & Raptis, A. (1996). Heat transfer of a micropolar fluid by the presence of radiation. Heat and Mass transfer, 31(6), 381-382.
  • [15] Balaram, M., & Sastri, V. U. K. (1973). Micropolar free convection flow. International Journal of Heat and Mass Transfer, 16(2), 437-441.
  • [16] Mohanty, B., Mishra, S. R., & Pattanayak, H. B. (2015). Numerical investigation on heat and mass transfer effect of micropolar fluid over a stretching sheet through porous media. Alexandria Engineering Journal, 54(2), 223-232.
  • [17] Oahimire, J. I., & Olajuwon, B. I. (2014). Effect of Hall current and thermal radiation on heat and mass transfer of a chemically reacting MHD flow of a micropolar fluid through a porous medium. Journal of King Saud University-Engineering Sciences, 26(2), 112-121.
  • [18] Al Sakkaf, L. Y., Al-Mdallal, Q. M., & Al Khawaja, U. (2018). A Numerical Algorithm for Solving Higher-Order Nonlinear BVPs with an Application on Fluid Flow over a Shrinking Permeable Infinite Long Cylinder. Complexity, 2018.
  • [19] Mishra, S. R., Khan, I., Al-Mdallal, Q. M., & Asifa, T. (2018). Free convective micropolar fluid flow and heat transfer over a shrinking sheet with heat source. Case studies in thermal engineering, 11, 113-119.
  • [20] Khan, Z. H., Qasim, M., Haq, R. U., & Al-Mdallal, Q. M. (2017). Closed form dual nature solutions of fluid flow and heat transfer over a stretching/shrinking sheet in a porous medium. Chinese journal of physics, 55(4), 1284-1293.
  • [21] Elnajjar, E. J., Al-Mdallal, Q. M., & Allan, F. M. (2016). Unsteady flow and heat transfer characteristics of fluid flow over a shrinking permeable infinite long cylinder. Journal of Heat Transfer, 138(9), 091008.
  • [22] Faltas, M. S., & Saad, E. I. (2014). Slow motion of spherical droplet in a micropolar fluid flow perpendicular to a planar solid surface. European Journal of Mechanics-B/Fluids, 48, 266-276.
  • [23] Sheikholeslami, M., Gorji-Bandpy, M., & Soleimani, S. (2013). Two phase simulation of nanofluid flow and heat transfer using heatline analysis. International Communications in Heat and Mass Transfer, 47, 73-81.
  • [24] Sheikholeslami, M., Gorji-Bandpy, M., & Ganji, D. D. (2013). Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy, 60, 501-510.
  • [25] Sheikholeslami, M., Bandpy, M. G., Ellahi, R., Hassan, M., & Soleimani, S. (2014). Effects of MHD on Cu–water nanofluid flow and heat transfer by means of CVFEM. Journal of Magnetism and Magnetic Materials, 349, 188-200.
  • [26] Sheikholeslami, M., Gorji-Bandpy, M., Pop, I., & Soleimani, S. (2013). Numerical study of natural convection between a circular enclosure and a sinusoidal cylinder using control volume based finite element method. International Journal of Thermal Sciences, 72, 147-158.
  • [27] Sheikholeslami, M., Gorji-Bandpy, M., Seyyedi, S. M., Ganji, D. D., Rokni, H. B., & Soleimani, S. (2013). Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries. Powder Technology, 247, 87-94.
  • [28] Borrelli, A., Giantesio, G., & Patria, M. C. (2015). Magnetoconvection of a micropolar fluid in a vertical channel. International Journal of Heat and Mass Transfer, 80, 614-625.
  • [29] Borrelli, A., Giantesio, G., & Patria, M. C. (2015). An exact solution for the 3D MHD stagnation-point flow of a micropolar fluid. Communications in Nonlinear Science and Numerical Simulation, 20(1), 121-135.
  • [30] Joneidi, A. A., Ganji, D. D., & Babaelahi, M. (2009). Micropolar flow in a porous channel with high mass transfer. International Communications in Heat and Mass Transfer, 36(10), 1082-1088.
  • [31] He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals, 30(3), 700-708.
  • [32] Zhang, S. (2007). Exp-function method for solving Maccari's system. Physics Letters A, 371(1-2), 65-71.
  • [33] Wazwaz, A. M. (2004). A sine-cosine method for handlingnonlinear wave equations. Mathematical and Computer modelling, 40(5-6), 499-508.
  • [34] Wazwaz, A. M. (2005). The tanh and the sine-cosine methods for the complex modified K dV and the generalized K dV equations. Computers & Mathematics with Applications, 49(7-8), 1101-1112.
  • [35] Domairry, G., & Fazeli, M. (2009). Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity. Communications in Nonlinear Science and Numerical Simulation, 14(2), 489-499.
  • [36] Rana, P., Shukla, N., Gupta, Y., & Pop, I. (2019). Homotopy analysis method for predicting multiple solutions in the channel flow with stability analysis. Communications in Nonlinear Science and Numerical Simulation, 66, 183-193.
  • [37] Zhao, Y. M. (2013). F-expansion method and its application for finding new exact solutions to the kudryashov-sinelshchikov equation. Journal of Applied Mathematics, 2013.
  • [38] Zhang, J. L., Wang, M. L., Wang, Y. M., & Fang, Z. D. (2006). The improved F-expansion method and its applications. Physics Letters A, 350(1-2), 103-109.
  • [39] Wazzan, L. (2009). A modified tanh–coth method for solving the general Burgers–Fisher and the Kuramoto–Sivashinsky equations. Communications in Nonlinear Science and Numerical Simulation, 14(6), 2642-2652.
  • [40] Gözükızıl, Ö. F., & Akçağıl, Ş. (2013). The tanh-coth method for some nonlinear pseudoparabolic equations with exact solutions. Advances in Difference Equations, 2013(1), 143.
  • [41] Sheikholeslami, M., & Ganji, D. D. (2014). Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer. Energy, 75, 400-410.
  • [42] Sheikholeslami, M., Soleimani, S., & Ganji, D. D. (2016). Effect of electric field on hydrothermal behavior of nanofluid in a complex geometry. Journal of Molecular Liquids, 213, 153-161.
  • [43] Gholinia, M., Ganji, D. D., Poorfallah, M., & Gholinia, S. (2016). Analytical and Numerical Method in the Free Convection Flow of Pure Water Non-Newtonian Nano fluid between Two Parallel Perpendicular Flat Plates. Innov Ener Res, 5(142), 2.
  • [44] Akbari, N., Gholinia, M., Gholinia, S., Dabbaghian, S., & Ganji, D. D. (2018). Analytical and Numerical Study of Hydrodynamic Nano Fluid Flow in a Two-Dimensional Semi-Porous Channel with Transverse Magnetic Field. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, 36(3).
  • [45] Akbari, N., GHOLINIA, M., Gholinia, S., Dabbaghian, S., Javadi, H., & Ganji, D. D. (2018). Analytical and Numerical Study of Micropolar Fluid Flow in a Porous Plate Due to Linear Stretching. Sigma: Journal of Engineering & Natural Sciences/Mühendislik ve Fen Bilimleri Dergisi, 36(4).
  • [46] Ganji, S. S., Ganji, D. D., Babazadeh, H., & Sadoughi, N. (2010). Application of amplitude–frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back. Mathematical Methods in the Applied Sciences, 33(2), 157-166.
  • [47] Inokuti, M., Sekine, H., & Mura, T. (1978). General use of the Lagrange multiplier in nonlinear mathematical physics. Variational method in the mechanics of solids, 33(5), 156-162.
  • [48] He, J. H. (1999). Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics, 34(4), 699-708.
  • [49] Abassy, T. A., El-Tawil, M. A., & El Zoheiry, H. (2007). Solving nonlinear partial differential equations using the modified variational iteration Padé technique. Journal of Computational and Applied Mathematics, 207(1), 73-91.
  • [50] Abassy, T. A., El-Tawil, M. A., & El-Zoheiry, H. (2007). Exact solutions of some nonlinear partial differential equations using the variational iteration method linked with Laplace transforms and the Padé technique. Computers & Mathematics with Applications, 54(7-8), 940-954.
  • [51] Soltani, L. A., & Shirzadi, A. (2010). A new modification of the variational iteration method. Computers & Mathematics with Applications, 59(8), 2528-2535.
  • [52] Ren, Z. F., & He, J. H. (2009). A simple approach to nonlinear oscillators. Physics Letters A, 373(41), 3749-3752.
  • [53] He, J. H. (2004). The homotopy perturbation method for nonlinear oscillators with discontinuities. Applied mathematics and computation, 151(1), 287-292.
  • [54] He, J. H. (2008). An improved amplitude-frequency formulation for nonlinear oscillators. International Journal of Nonlinear Sciences and Numerical Simulation, 9(2), 211-212.
  • [55] Sibanda, P., & Awad, F. (2010). Flow of a micropolar fluid in channel with heat and mass transfer. Fluid Mechanics and Heat & Mass Transfer.
  • [56] Sheikholeslami, M., Hatami, M., & Ganji, D. D. (2014). Micropolar fluid flow and heat transfer in a permeable channel using analytical method. Journal of Molecular Liquids, 194, 30-36.
  • [57] Ganji, D. D., Tari, H., & Jooybari, M. B. (2007). Variational iteration method and homotopy perturbation method for nonlinear evolution equations. Computers & Mathematics with Applications, 54(7-8), 1018-1027.
  • [58] Ganji, D. D., Afrouzi, G. A., & Talarposhti, R. A. (2007). Application of variational iteration method and homotopy–perturbation method for nonlinear heat diffusion and heat transfer equations. Physics Letters A, 368(6), 450-457.
  • [59] Varedi, S. M., Hosseini, M. J., Rahimi, M., & Ganji, D. D. (2007). He's variational iteration method for solving a semi-linear inverse parabolic equation. Physics letters A, 370(3-4), 275-280.
  • [60] Sheikholeslami, M., Ashorynejad, H. R., Ganji, D. D., & Rashidi, M. M. (2014). Heat and mass transfer of a micropolar fluid in a porous channel. Communications in Numerical Analysis, 2014(unknown), 1-20.
There are 60 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Mosayeb Gholınıa This is me 0000-0001-8291-8824

Saber Gholınıa This is me 0000-0003-4597-2279

Hossein Javadı This is me 0000-0002-2059-7145

Davood Domiri Ganjı This is me 0000-0002-4293-5993

Publication Date June 1, 2019
Submission Date July 9, 2018
Published in Issue Year 2019 Volume: 37 Issue: 2

Cite

Vancouver Gholınıa M, Gholınıa S, Javadı H, Ganjı DD. INVESTIGATION OF MICROPOLAR FLUID FLOW AND HEAT TRANSFER IN A TWO-DIMENSIONAL PERMEABLE CHANNEL BY ANALYTICAL AND NUMERICAL METHODS. SIGMA. 2019;37(2):393-41.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/