THE GALERKIN FINITE ELEMENT METHOD FOR ADVECTION DIFFUSION EQUATION
Yıl 2019,
Cilt: 37 Sayı: 1, 119 - 128, 01.03.2019
Melis Zorsahın Gorgulu
Dursun Irk
Öz
Cubic B-spline Galerkin method, based on second and fourth order single step methods for time integration is used to solve numerically the advection diffusion equation (ADE). Second order single step method is also known as Crank Nicolson method. Two numerical examples are used to validate the proposed method which is found to be accurate and efficient. The effects of the advection and diffusion terms on the solution domain and the absolute error of the numerical solution are studied with the help of graphs. The obtained results show that the proposed fourth order single step method has a high success as a numerical technique for solving the ADE.
Kaynakça
- [1] Dag I., Irk D. and Tombul M. (2006). “Least-squares finite element method for the advection diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 173, No. 1, pp. 554-565, DOI: 10.1016/j.amc.2005.04.054.
- [2] Dag I. Canivar A. and Sahin A. (2011). “Taylor-Galerkin method for advection-diffusion equation”, Kybernetes, Emerald Group Publishing Limited, Vol. 40, No. 5/6, pp. 762-777, DOI: 10.1108/03684921111142304.
- [3] Dehghan M. (2004). “Weighted finite difference techniques for the one-dimensional advection-diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 147, No. 2, pp. 307-319, DOI: 10.1016/S0096-3003(02)00667-7.
- [4] Dhawan, S., Kapoor, S. and Kumar, S. (2012). “Numerical method for advection diffusion equation using FEM and B-splines”, Journal of Computational Science, Elsevier, Vol. 3, No. 5, pp. 429-437, DOI: 10.1016/j.jocs.2012.06.006.
- [5] Goh, J., Abd Majid, A. and Ismail, A. I. M. (2012). “Cubic B-spline collocation method for one-dimensional heat and advection-diffusion equations”, Journal of Applied Mathematics, Hindawi Publishing Corporation, Vol. 2012, DOI: 10.1155/2012/458701.
- [6] Irk D., Dag I. and Tombul M. (2015), “Extended Cubic B-Spline Solution of the Advection-Diffusion Equation”, KSCE Journal of Civil Engineering, Springer, Vol. 19, No. 4, pp. 929-934, DOI: 10.1007/s12205-013-0737-7.
- [7] Jiwari R. (2012), “A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation”, Computer Physics Communications, Elsevier, Vol. 183, No. 11, pp. 2413-2423, DOI: 10.1016/j.cpc.2012.06.009.
- [8] Jiwari R. (2015), “A hybrid numerical scheme for the numerical solution of the Burgers’ equation”, Computer Physics Communications, Elsevier, Vol. 188, pp. 59-67, DOI: 10.1016/j.cpc.2014.11.004.
- [9] Kaya, B. (2010). “Solution of the advection-diffusion equation using the differential quadrature method”. KSCE Journal of Civil Engineering, Springer, Vol. 14, No. 1, pp. 69-75, DOI: 10.1007/s12205-010-0069-9.
- [10] Korkmaz A. and Dag I., (2012). “Cubic B‐spline differential quadrature methods for the advection‐diffusion equation”, Int. J. Numer. Method. H., Vol. 22, No. 8, pp.1021-1036, DOI: 10.1108/09615531211271844.
- [11] Korkmaz A. and Dag I. (2016). “Quartic and quintic B-spline methods for advection diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 274, pp.208-219, DOI: 10.1016/j.amc.2015.11.004.
- [12] Kumar, A., Jaiswal, D. K. and Kumar, N. (2009). “Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain”, J. Earth Syst. Sci., Springer India, in co-publication with Indian Academy of Sciences, Vol. 118, No. 5, pp. 539-549.
- [13] Mohebbi A. and Dehghan M. (2010). “High-order compact solution of the one-dimensional heat and advection-diffusion equations”, Appl. Math. Model., Elsevier, Vol. 34, No. 10, pp. 3071-3084, DOI: 10.1016/j.apm.2010.01.013.
- [14] Nazir, T., Abbas, M., Ismail, A. I. M., Majid, A. A. and Rashid, A. (2016). “The numerical solution of advection–diffusion problems using new cubic trigonometric B-splines approach”, Appl. Math. Model., Elsevier, Vol. 40, No. 7, pp. 4586-4611, DOI: 10.1016/j.apm.2015.11.041.
- [15] Prenter, P.M. (1975). Splines and variational methods, John Wiley& Sons, Inc., New York, pp. 87-107.
- [16] Sari M., Guraslan G. and Zeytinoglu A. (2010). “High-Order finite difference schemes for solving the
advection-diffusion equation”, Math. Comput. Appl., Multidisciplinary Digital Publishing Institute, Vol. 15, No. 3, pp. 449-460, DOI:10.3390/mca15030449.
- [17] Sharma, D., Jiwari, R. and Kumar, S. (2012). “Numerical Solution of Two Point Boundary Value Problems Using Galerkin-Finite Element Method”, International journal of nonlinear science, Vol. 13, No. 2, pp. 204-210.
- [18] Yadav, O.P. and Jiwari, R. (2017), “Finite element analysis and approximation of Burgers’‐Fisher equation”, Numerical Methods for Partial Differential Equations, Wiley Online Library, Vol. 33, No. 5, pp. 1652-1677, DOI: 10.1002/num.22158.
- [19] Verma, A., Jiwari, R. and Koksal, M.E. (2014), “Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions”, Advances in Difference Equations, Springer International Publishing, Vol. 2014, No. 229, DOI:10.1186/1687-1847-2014-229.
Yıl 2019,
Cilt: 37 Sayı: 1, 119 - 128, 01.03.2019
Melis Zorsahın Gorgulu
Dursun Irk
Kaynakça
- [1] Dag I., Irk D. and Tombul M. (2006). “Least-squares finite element method for the advection diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 173, No. 1, pp. 554-565, DOI: 10.1016/j.amc.2005.04.054.
- [2] Dag I. Canivar A. and Sahin A. (2011). “Taylor-Galerkin method for advection-diffusion equation”, Kybernetes, Emerald Group Publishing Limited, Vol. 40, No. 5/6, pp. 762-777, DOI: 10.1108/03684921111142304.
- [3] Dehghan M. (2004). “Weighted finite difference techniques for the one-dimensional advection-diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 147, No. 2, pp. 307-319, DOI: 10.1016/S0096-3003(02)00667-7.
- [4] Dhawan, S., Kapoor, S. and Kumar, S. (2012). “Numerical method for advection diffusion equation using FEM and B-splines”, Journal of Computational Science, Elsevier, Vol. 3, No. 5, pp. 429-437, DOI: 10.1016/j.jocs.2012.06.006.
- [5] Goh, J., Abd Majid, A. and Ismail, A. I. M. (2012). “Cubic B-spline collocation method for one-dimensional heat and advection-diffusion equations”, Journal of Applied Mathematics, Hindawi Publishing Corporation, Vol. 2012, DOI: 10.1155/2012/458701.
- [6] Irk D., Dag I. and Tombul M. (2015), “Extended Cubic B-Spline Solution of the Advection-Diffusion Equation”, KSCE Journal of Civil Engineering, Springer, Vol. 19, No. 4, pp. 929-934, DOI: 10.1007/s12205-013-0737-7.
- [7] Jiwari R. (2012), “A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation”, Computer Physics Communications, Elsevier, Vol. 183, No. 11, pp. 2413-2423, DOI: 10.1016/j.cpc.2012.06.009.
- [8] Jiwari R. (2015), “A hybrid numerical scheme for the numerical solution of the Burgers’ equation”, Computer Physics Communications, Elsevier, Vol. 188, pp. 59-67, DOI: 10.1016/j.cpc.2014.11.004.
- [9] Kaya, B. (2010). “Solution of the advection-diffusion equation using the differential quadrature method”. KSCE Journal of Civil Engineering, Springer, Vol. 14, No. 1, pp. 69-75, DOI: 10.1007/s12205-010-0069-9.
- [10] Korkmaz A. and Dag I., (2012). “Cubic B‐spline differential quadrature methods for the advection‐diffusion equation”, Int. J. Numer. Method. H., Vol. 22, No. 8, pp.1021-1036, DOI: 10.1108/09615531211271844.
- [11] Korkmaz A. and Dag I. (2016). “Quartic and quintic B-spline methods for advection diffusion equation”, Appl. Math. Comput., Elsevier, Vol. 274, pp.208-219, DOI: 10.1016/j.amc.2015.11.004.
- [12] Kumar, A., Jaiswal, D. K. and Kumar, N. (2009). “Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain”, J. Earth Syst. Sci., Springer India, in co-publication with Indian Academy of Sciences, Vol. 118, No. 5, pp. 539-549.
- [13] Mohebbi A. and Dehghan M. (2010). “High-order compact solution of the one-dimensional heat and advection-diffusion equations”, Appl. Math. Model., Elsevier, Vol. 34, No. 10, pp. 3071-3084, DOI: 10.1016/j.apm.2010.01.013.
- [14] Nazir, T., Abbas, M., Ismail, A. I. M., Majid, A. A. and Rashid, A. (2016). “The numerical solution of advection–diffusion problems using new cubic trigonometric B-splines approach”, Appl. Math. Model., Elsevier, Vol. 40, No. 7, pp. 4586-4611, DOI: 10.1016/j.apm.2015.11.041.
- [15] Prenter, P.M. (1975). Splines and variational methods, John Wiley& Sons, Inc., New York, pp. 87-107.
- [16] Sari M., Guraslan G. and Zeytinoglu A. (2010). “High-Order finite difference schemes for solving the
advection-diffusion equation”, Math. Comput. Appl., Multidisciplinary Digital Publishing Institute, Vol. 15, No. 3, pp. 449-460, DOI:10.3390/mca15030449.
- [17] Sharma, D., Jiwari, R. and Kumar, S. (2012). “Numerical Solution of Two Point Boundary Value Problems Using Galerkin-Finite Element Method”, International journal of nonlinear science, Vol. 13, No. 2, pp. 204-210.
- [18] Yadav, O.P. and Jiwari, R. (2017), “Finite element analysis and approximation of Burgers’‐Fisher equation”, Numerical Methods for Partial Differential Equations, Wiley Online Library, Vol. 33, No. 5, pp. 1652-1677, DOI: 10.1002/num.22158.
- [19] Verma, A., Jiwari, R. and Koksal, M.E. (2014), “Analytic and numerical solutions of nonlinear diffusion equations via symmetry reductions”, Advances in Difference Equations, Springer International Publishing, Vol. 2014, No. 229, DOI:10.1186/1687-1847-2014-229.