Araştırma Makalesi
BibTex RIS Kaynak Göster

ON SPACES OF IDEAL CONVERGENT FIBONACCI DIFFERENCE SEQUENCE DEFINED BY ORLICZ FUNCTION

Yıl 2019, Cilt: 37 Sayı: 1, 143 - 154, 01.03.2019

Öz

In this paper, we introduce some new Fibonacci difference sequence spaces , , and by using the idea of Orlicz function and the Fibonacci difference matrix defined by Fibonacci sequence. We study some topological and algebraic properties on these spaces. Furthermore, we study some inclusion relations concerning these spaces.

Kaynakça

  • [1] M. Basarir, F. Basar and EE Kara. On The Spaces of Fibonacci Diffeerence Absolutely p-Summable, Null and Convergent Sequences. Sarajevo J. Math, 12(25): 2, 2016.
  • [2] M. Candan and E. E. Kara. A study on topological and geometrical characteristics of new banach sequence spaces. Gulf J. Math, 3(4):67-84, 2015.
  • [3] M. Candan. A new approach on the spaces of generalized Fibonacci difference null and convergent sequences. Math. terna, 5(1):191-210, 2015.
  • [4] M. Candan. Vector valued Orlicz sequence space generalized with an infinite matrix and some of its specific characteristics. Gen, 29(2):1-16, 2015.
  • [5] M. Candan and K. Kayaduman. Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core. Brithish J. Math. Comput. Sci, 7(2):150-167, 2015.
  • [6] M. Candan and G. Kilnc. A different look for paranormed riesz sequence space derived by Fibonacci matrix. Konuralp Journal of Mathematics, 3(2):62-76, 2015.
  • [7] S. Demiriz, E. E. Kara, and M. Bacarir. On the Fibonacci almost convergent sequence space and Fibonacci core. Kyungpook Mathematical Journal, 55(2), 2015.
  • [8] H. Fast. Sur la convergence statistique. Colloquium Mathematicae. 2(3-4): 241-244, 1951.
  • [9] E. E. Kara and M Basarir. An application of Fibonacci numbers into infinite toeplitz matrices. Caspian J. Math. Sci, 1(1):43-47, 2012.
  • [10] E. E. Kara. Some topological and geometrical properties of new banach sequence spaces. Journal of Inequalities and Applications, 2013(1):38, 2013.
  • [11] E. E. Kara and S. Demiriz. Some new paranormed difference sequence spaces derived by Fibonacci numbers. arXiv preprint arXiv:1309.0154, 2013.
  • [12] Vakeel A Khan. On a new sequence space defined by Orlicz functions. Commun. Fac. Sci Univ. Ank. Series A, 1(57):25-33, 2008.
  • [13] Vakeel A Khan, Hira Fatima, Sameera AA Abdullah, and Kamal MAS Alshlool. On paranorm convergent double sequence spaces defined by an Orlicz function. Analysis, 37(3):157-167, 2017.
  • [14] Vakeel A Khan and Sabiha Tabassum. On ideal convergent difference double sequence spaces in n-normed spaces defined by Orlicz function. Theory and Applications of Mathematics & Computer Science, 3(1):90-98, 2013.
  • [15] Vakeel A Khan , Rami K. A. Rababah, Kamal M. A. S. Alshlool, Sameera A. A. Abdullah, A. Ahmad. On Ideal Convergence Fibonacci Difference Sequence Spaces. Advanced in Difference Equations, 2018(1):199, 2018.
  • [16] G. Kilinc, M. Candan. Some generalized Fibonacci difference spaces defined by a sequence of modulus functions. Facta Universitatis, Series: Mathematics and Informatics, 095-116, 2017.
  • [17] Thomas Koshy. Fibonacci and Lucas numbers with applications, 1. John Wiley & Sons, 2017.
  • [18] P. Kostyrko, M. Macaj, and T. Salat. Statistical convergence and I-convergence. Real Analysis Exchange, 1999.
  • [19] P. Kostyrko, W. Wilczynski, Tibor _Salat, et al. I-convergence. Real Analysis Exchange, 26(2):669-686, 2000.
  • [20] Krasnoselskii, M. Aleksandrovich, and I. Bronislavovich Rutitskii. Convex functions and Orlicz spaces. P. Noordhoff, 1961.
  • [21] Joram Lindenstrauss and Lior Tzafriri. On Orlicz sequence spaces. Israel Journal of Mathematics, 10(3):379-390, 1971.
  • [22] H. Nakano. Concave modulars. Journal of the Mathematical society of Japan, 5(1):29-49, 1953.
  • [23] S. D. Parashar and B. Choudhary. Sequence spaces defined by Orlicz functions. Indian Journal of Pure and Applied Mathematics, 25:419-419, 1994.
  • [24] T. Salat, B. C. Tripathy, and M. Ziman. On some properties of I-convergence. Tatra Mt. Math. Publ, 28(2):274-286, 2004.
  • [25] T. Sal_at, B. C. Tripathy, and M. Ziman. On I-convergence field. Ital. J. Pure Appl. Math, 17(5):1-8, 2005.
  • [26] H. Steinhaus. Sur la convergence ordinaire et la convergence asymptotique. In Colloq. Math, v 2(1), 73-74, 1951.
  • [27] H. Toutenburg., I. J. Maddox, Elements of functional analysis. Cambridge university press 1970. preis 50 8. net. Biometrical Journal, 12(3):197-197, 1970.
  • [28] B. C. Tripathy and B. Hazarika. Some I-convergent sequence spaces defined by Orlicz functions. Acta Mathematicae Applicatae Sinica (English Series), 27(1):149-154, 2011.
Yıl 2019, Cilt: 37 Sayı: 1, 143 - 154, 01.03.2019

Öz

Kaynakça

  • [1] M. Basarir, F. Basar and EE Kara. On The Spaces of Fibonacci Diffeerence Absolutely p-Summable, Null and Convergent Sequences. Sarajevo J. Math, 12(25): 2, 2016.
  • [2] M. Candan and E. E. Kara. A study on topological and geometrical characteristics of new banach sequence spaces. Gulf J. Math, 3(4):67-84, 2015.
  • [3] M. Candan. A new approach on the spaces of generalized Fibonacci difference null and convergent sequences. Math. terna, 5(1):191-210, 2015.
  • [4] M. Candan. Vector valued Orlicz sequence space generalized with an infinite matrix and some of its specific characteristics. Gen, 29(2):1-16, 2015.
  • [5] M. Candan and K. Kayaduman. Almost convergent sequence space derived by generalized Fibonacci matrix and Fibonacci core. Brithish J. Math. Comput. Sci, 7(2):150-167, 2015.
  • [6] M. Candan and G. Kilnc. A different look for paranormed riesz sequence space derived by Fibonacci matrix. Konuralp Journal of Mathematics, 3(2):62-76, 2015.
  • [7] S. Demiriz, E. E. Kara, and M. Bacarir. On the Fibonacci almost convergent sequence space and Fibonacci core. Kyungpook Mathematical Journal, 55(2), 2015.
  • [8] H. Fast. Sur la convergence statistique. Colloquium Mathematicae. 2(3-4): 241-244, 1951.
  • [9] E. E. Kara and M Basarir. An application of Fibonacci numbers into infinite toeplitz matrices. Caspian J. Math. Sci, 1(1):43-47, 2012.
  • [10] E. E. Kara. Some topological and geometrical properties of new banach sequence spaces. Journal of Inequalities and Applications, 2013(1):38, 2013.
  • [11] E. E. Kara and S. Demiriz. Some new paranormed difference sequence spaces derived by Fibonacci numbers. arXiv preprint arXiv:1309.0154, 2013.
  • [12] Vakeel A Khan. On a new sequence space defined by Orlicz functions. Commun. Fac. Sci Univ. Ank. Series A, 1(57):25-33, 2008.
  • [13] Vakeel A Khan, Hira Fatima, Sameera AA Abdullah, and Kamal MAS Alshlool. On paranorm convergent double sequence spaces defined by an Orlicz function. Analysis, 37(3):157-167, 2017.
  • [14] Vakeel A Khan and Sabiha Tabassum. On ideal convergent difference double sequence spaces in n-normed spaces defined by Orlicz function. Theory and Applications of Mathematics & Computer Science, 3(1):90-98, 2013.
  • [15] Vakeel A Khan , Rami K. A. Rababah, Kamal M. A. S. Alshlool, Sameera A. A. Abdullah, A. Ahmad. On Ideal Convergence Fibonacci Difference Sequence Spaces. Advanced in Difference Equations, 2018(1):199, 2018.
  • [16] G. Kilinc, M. Candan. Some generalized Fibonacci difference spaces defined by a sequence of modulus functions. Facta Universitatis, Series: Mathematics and Informatics, 095-116, 2017.
  • [17] Thomas Koshy. Fibonacci and Lucas numbers with applications, 1. John Wiley & Sons, 2017.
  • [18] P. Kostyrko, M. Macaj, and T. Salat. Statistical convergence and I-convergence. Real Analysis Exchange, 1999.
  • [19] P. Kostyrko, W. Wilczynski, Tibor _Salat, et al. I-convergence. Real Analysis Exchange, 26(2):669-686, 2000.
  • [20] Krasnoselskii, M. Aleksandrovich, and I. Bronislavovich Rutitskii. Convex functions and Orlicz spaces. P. Noordhoff, 1961.
  • [21] Joram Lindenstrauss and Lior Tzafriri. On Orlicz sequence spaces. Israel Journal of Mathematics, 10(3):379-390, 1971.
  • [22] H. Nakano. Concave modulars. Journal of the Mathematical society of Japan, 5(1):29-49, 1953.
  • [23] S. D. Parashar and B. Choudhary. Sequence spaces defined by Orlicz functions. Indian Journal of Pure and Applied Mathematics, 25:419-419, 1994.
  • [24] T. Salat, B. C. Tripathy, and M. Ziman. On some properties of I-convergence. Tatra Mt. Math. Publ, 28(2):274-286, 2004.
  • [25] T. Sal_at, B. C. Tripathy, and M. Ziman. On I-convergence field. Ital. J. Pure Appl. Math, 17(5):1-8, 2005.
  • [26] H. Steinhaus. Sur la convergence ordinaire et la convergence asymptotique. In Colloq. Math, v 2(1), 73-74, 1951.
  • [27] H. Toutenburg., I. J. Maddox, Elements of functional analysis. Cambridge university press 1970. preis 50 8. net. Biometrical Journal, 12(3):197-197, 1970.
  • [28] B. C. Tripathy and B. Hazarika. Some I-convergent sequence spaces defined by Orlicz functions. Acta Mathematicae Applicatae Sinica (English Series), 27(1):149-154, 2011.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Articles
Yazarlar

Vakeel A. Khan Bu kişi benim 0000-0002-4132-0954

Kamal M. A. S. Alshlool Bu kişi benim 0000-0003-0029-2405

Abdullah A. H. Makharesh Bu kişi benim 0000-0002-7225-3512

Sameera A. A. Abdullah Bu kişi benim 0000-0003-0029-2405

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 17 Ağustos 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 37 Sayı: 1

Kaynak Göster

Vancouver Khan VA, M. A. S. Alshlool K, A. H. Makharesh A, A. A. Abdullah S. ON SPACES OF IDEAL CONVERGENT FIBONACCI DIFFERENCE SEQUENCE DEFINED BY ORLICZ FUNCTION. SIGMA. 2019;37(1):143-54.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/