Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 41 Sayı: 2, 415 - 422, 30.04.2023

Öz

Kaynakça

  • REFERENCES
  • [1] Hardy GH. Note on a theorem of Hilbert. Math Z. 1920;6:314-317. [CrossRef]
  • [2] Hardy GH. Notes on some points in the integral calculus, LX. An inequality between integrals. Mess Math 1925;54:150-156.
  • [3] Hardy GH, Littlewood JE. Elementary theorems concerning power series with positive coefficients and moment constants of positive functions. J Reine Angew Math 1927;157:141-158. [CrossRef]
  • [4] Hardy GH. Notes on some points in the integral cal-culus, LXIV. Mess Math 1928;57:12-16
  • [5] Oguntuase JA, Persson LE. Time scales Hardy-type inequalities via superquadraticity. Ann Funct Anal 2014;5:61-73. [CrossRef]
  • [6] Fabelurin OO, Oguntuase JA, Persson LE. Multidimensional hardy-type inequalities on time scales with variable Exponents. J Math Inequal 2019;13:725-736. [CrossRef]
  • [7] Agarwal RP, O'Regan D, Saker SH. Hardy type inequalities on time scales. Switzerland: Springer International Publishing; 2016. [CrossRef]
  • [8] Li W, Liu D, Liu J. Weighted inequalities for frac-tional Hardy operators and commutators. Inequal Appl 2019;158:1−14. [CrossRef]
  • [9] Bradley J. Hardy inequalities with mixed norms. Can Math Bull 1978;21:405−408. [CrossRef]
  • [10] Kidner A, Persson LE. Weighted Inequalities of Hardy Type. Singapore: World Scientific; 2003. [CrossRef]
  • [11] Opic B, Kufner A. Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series. Harlow, Essex: Longman Scientific and Technical; 1990
  • [12] Heinig HP, Kufner A, Persson LE. On some frac-tional order hardy inequalities. J Inequal Appl 1997;1:25−46. [CrossRef]
  • [13] Dyda B. A Fractional Order Hardy Inequality. Illinois J Math 2004;48:575−588. [CrossRef]
  • [14] Loss M, Sloane C. Hardy inequalities for frac-tional integrals on general domains. J Funct Anal 2010;259:1369-1379. [CrossRef]
  • [15] Dyda B. Fractional hardy inequality with a remainder term. Colloquium Mathematicum 2011;122:59−67.[CrossRef]
  • [16] Bogdan K, Bartłomiej D. The best constant in a frac-tional Hardy inequality. Math Nachr 2011;284:629-638. [CrossRef]
  • [17] Craig A, Sloane C. A fractional hardy-Sobolev-Maz'ya inequality on The Upper Halfspace. Proceed Am Math Soc 2011;139:4003-4016. [CrossRef]
  • [18] Bartłomiej D, Rupert LF. Fractional Hardy-Sobolev-Maz'ya inequality for domains. Stud Math 2012;208:151−166. [CrossRef]
  • [19] Edmunds DE, Hurri-Syrjanen R, Vahakangas AV. Fractional hardy-type inequalities in domains with uniformly fat complement. Proceed Am Math Soc 2014;142:897−907. [CrossRef]
  • [20] Ihnatsyeva, L, Lehrback J, Tuominen H, Vahakangas AV. Fractional Hardy inequalities and visibility of the boundary. Stud Math 2014224:47−80. [CrossRef]
  • [21] Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Maths 1990;18:18-56. [CrossRef]
  • [22] Bohner M, Georgiev SG. Sequences and Series of Functions. In: Multivariable Dynamic Calculus on Time Scales. Switzerland: Springer Int Publ; 2016.[CrossRef]
  • [23] Bohner M, Petereson A. Dynamic Equations on Time Scales. An Introduction with Applications, Boston: Birkhauser; 2001. [CrossRef]
  • [24] Bohner M, Nosheen A, Pecaric J, Younas A. Some dynamic Hardy type inequalities on time scales. J Math Inequal 2014;8:185-199. [CrossRef]
  • [25] Agarwal RP, Bohner M, O'Regan D, Saker SH. Some Wirtinger-type inequalities on time scales and their applications. Pacific J Math 2011;252:1-26. [CrossRef]
  • [26] Akın L. On the fractional maximal delta inte-gral type inequalities on time scales. Fractal Fract 2020;4:1−10. [CrossRef]
  • [27] Akın L. On some results of weighted Hölder type inequality on time scales. Middle East J Sci 2020;6:15−22. [CrossRef]
  • [28] Anwar M, Bibi R, Bohner M, Pecaric JE. Jensen's functional on time scales for several variables. Int J Anal 2014:1−14 [CrossRef].
  • [29] Spedding V. Taming nature's numbers, New Scientist 2003;179:28-31.
  • [30] Tisdell CC, Zaidi A. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic mod- elling. Nonlinear Anal 2008;68:3504-3524. [CrossRef]
  • [31] Bohner M, Heim J, Liu A. Qualitative analysis of Solow model on time scales. J Concrete Appl Math 2015;13:183-197.
  • [32] Brigo D, Mercurio F. Discrete time vs continuous time stock-price dynamics and implications for option pricing. Finance Stochast 2000;4:147-159. [CrossRef]
  • [33] Seadawy AR, Iqbal M, Lu D. Nonlinear wave solu-tions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity. J Taibah Univ Sci 2019;13:1060−1072. [CrossRef]
  • [34] Akın L. A new approach for the fractional integral operator in time scales with variable exponent leb-esgue spaces. Fractal Fract 2021;5:1−13. [CrossRef]
  • [35] Akın L. On innovations of n-dimensional inte-gral-type inequality on time scales. Adv Diff Equations 2021:1−10. [CrossRef]
  • [36] Düşünceli F. New Exact Solutions for Ablowitz-Kaup-Newell-Segur water Wave Equation. Sigma J Eng Nat Sci 2019;10:171−177.
  • [37] Düşünceli F, Çelik E. Numerical Solution for High-Order Linear Complex Differential Equations with Variable Coefficients. Numer Methods Partial Differ Equat 2018;34:1645−1658. [CrossRef]
  • [38] Dusunceli F, Celik E, Askin M, Bulut H. New exact solutions for the doubly dispersive equation using the improved Bernoulli sub-equation function method. Indian J Physics 2020;95:1−6. [CrossRef]
  • [39] Abu Arqub O. Computational algorithm for solving singular Fredholm time-fractional partial integro-differential equations with error estimates. J Appl Math Comput 2019;59:227-243. [CrossRef]
  • [40] Abu Arqub O. Numerical solutions of systems of first-order, two-point BVPs based on the reproduc-ing kernel algorithm. Calcolo 2018;55:3 [CrossRef]

On innovations of the multivariable fractional Hardy-type inequalities on time scales

Yıl 2023, Cilt: 41 Sayı: 2, 415 - 422, 30.04.2023

Öz

Fractional integral-type inequalities, dynamic equations, integral operators and variable expo-nents have an important place in time scales theory and harmonic analysis. Our main goal in this study is to obtain the multivariable fractional Hardy-type integral inequality using a new version of Jensen’s inequality for super-quadratic and sub-quadratic functions on time scales with variable exponents.

Kaynakça

  • REFERENCES
  • [1] Hardy GH. Note on a theorem of Hilbert. Math Z. 1920;6:314-317. [CrossRef]
  • [2] Hardy GH. Notes on some points in the integral calculus, LX. An inequality between integrals. Mess Math 1925;54:150-156.
  • [3] Hardy GH, Littlewood JE. Elementary theorems concerning power series with positive coefficients and moment constants of positive functions. J Reine Angew Math 1927;157:141-158. [CrossRef]
  • [4] Hardy GH. Notes on some points in the integral cal-culus, LXIV. Mess Math 1928;57:12-16
  • [5] Oguntuase JA, Persson LE. Time scales Hardy-type inequalities via superquadraticity. Ann Funct Anal 2014;5:61-73. [CrossRef]
  • [6] Fabelurin OO, Oguntuase JA, Persson LE. Multidimensional hardy-type inequalities on time scales with variable Exponents. J Math Inequal 2019;13:725-736. [CrossRef]
  • [7] Agarwal RP, O'Regan D, Saker SH. Hardy type inequalities on time scales. Switzerland: Springer International Publishing; 2016. [CrossRef]
  • [8] Li W, Liu D, Liu J. Weighted inequalities for frac-tional Hardy operators and commutators. Inequal Appl 2019;158:1−14. [CrossRef]
  • [9] Bradley J. Hardy inequalities with mixed norms. Can Math Bull 1978;21:405−408. [CrossRef]
  • [10] Kidner A, Persson LE. Weighted Inequalities of Hardy Type. Singapore: World Scientific; 2003. [CrossRef]
  • [11] Opic B, Kufner A. Hardy-Type Inequalities. Pitman Research Notes in Mathematics Series. Harlow, Essex: Longman Scientific and Technical; 1990
  • [12] Heinig HP, Kufner A, Persson LE. On some frac-tional order hardy inequalities. J Inequal Appl 1997;1:25−46. [CrossRef]
  • [13] Dyda B. A Fractional Order Hardy Inequality. Illinois J Math 2004;48:575−588. [CrossRef]
  • [14] Loss M, Sloane C. Hardy inequalities for frac-tional integrals on general domains. J Funct Anal 2010;259:1369-1379. [CrossRef]
  • [15] Dyda B. Fractional hardy inequality with a remainder term. Colloquium Mathematicum 2011;122:59−67.[CrossRef]
  • [16] Bogdan K, Bartłomiej D. The best constant in a frac-tional Hardy inequality. Math Nachr 2011;284:629-638. [CrossRef]
  • [17] Craig A, Sloane C. A fractional hardy-Sobolev-Maz'ya inequality on The Upper Halfspace. Proceed Am Math Soc 2011;139:4003-4016. [CrossRef]
  • [18] Bartłomiej D, Rupert LF. Fractional Hardy-Sobolev-Maz'ya inequality for domains. Stud Math 2012;208:151−166. [CrossRef]
  • [19] Edmunds DE, Hurri-Syrjanen R, Vahakangas AV. Fractional hardy-type inequalities in domains with uniformly fat complement. Proceed Am Math Soc 2014;142:897−907. [CrossRef]
  • [20] Ihnatsyeva, L, Lehrback J, Tuominen H, Vahakangas AV. Fractional Hardy inequalities and visibility of the boundary. Stud Math 2014224:47−80. [CrossRef]
  • [21] Hilger S. Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Maths 1990;18:18-56. [CrossRef]
  • [22] Bohner M, Georgiev SG. Sequences and Series of Functions. In: Multivariable Dynamic Calculus on Time Scales. Switzerland: Springer Int Publ; 2016.[CrossRef]
  • [23] Bohner M, Petereson A. Dynamic Equations on Time Scales. An Introduction with Applications, Boston: Birkhauser; 2001. [CrossRef]
  • [24] Bohner M, Nosheen A, Pecaric J, Younas A. Some dynamic Hardy type inequalities on time scales. J Math Inequal 2014;8:185-199. [CrossRef]
  • [25] Agarwal RP, Bohner M, O'Regan D, Saker SH. Some Wirtinger-type inequalities on time scales and their applications. Pacific J Math 2011;252:1-26. [CrossRef]
  • [26] Akın L. On the fractional maximal delta inte-gral type inequalities on time scales. Fractal Fract 2020;4:1−10. [CrossRef]
  • [27] Akın L. On some results of weighted Hölder type inequality on time scales. Middle East J Sci 2020;6:15−22. [CrossRef]
  • [28] Anwar M, Bibi R, Bohner M, Pecaric JE. Jensen's functional on time scales for several variables. Int J Anal 2014:1−14 [CrossRef].
  • [29] Spedding V. Taming nature's numbers, New Scientist 2003;179:28-31.
  • [30] Tisdell CC, Zaidi A. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic mod- elling. Nonlinear Anal 2008;68:3504-3524. [CrossRef]
  • [31] Bohner M, Heim J, Liu A. Qualitative analysis of Solow model on time scales. J Concrete Appl Math 2015;13:183-197.
  • [32] Brigo D, Mercurio F. Discrete time vs continuous time stock-price dynamics and implications for option pricing. Finance Stochast 2000;4:147-159. [CrossRef]
  • [33] Seadawy AR, Iqbal M, Lu D. Nonlinear wave solu-tions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity. J Taibah Univ Sci 2019;13:1060−1072. [CrossRef]
  • [34] Akın L. A new approach for the fractional integral operator in time scales with variable exponent leb-esgue spaces. Fractal Fract 2021;5:1−13. [CrossRef]
  • [35] Akın L. On innovations of n-dimensional inte-gral-type inequality on time scales. Adv Diff Equations 2021:1−10. [CrossRef]
  • [36] Düşünceli F. New Exact Solutions for Ablowitz-Kaup-Newell-Segur water Wave Equation. Sigma J Eng Nat Sci 2019;10:171−177.
  • [37] Düşünceli F, Çelik E. Numerical Solution for High-Order Linear Complex Differential Equations with Variable Coefficients. Numer Methods Partial Differ Equat 2018;34:1645−1658. [CrossRef]
  • [38] Dusunceli F, Celik E, Askin M, Bulut H. New exact solutions for the doubly dispersive equation using the improved Bernoulli sub-equation function method. Indian J Physics 2020;95:1−6. [CrossRef]
  • [39] Abu Arqub O. Computational algorithm for solving singular Fredholm time-fractional partial integro-differential equations with error estimates. J Appl Math Comput 2019;59:227-243. [CrossRef]
  • [40] Abu Arqub O. Numerical solutions of systems of first-order, two-point BVPs based on the reproduc-ing kernel algorithm. Calcolo 2018;55:3 [CrossRef]
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Research Articles
Yazarlar

Lütfi Akın 0000-0002-5653-9393

Yusuf Zeren 0000-0001-8346-2208

Yayımlanma Tarihi 30 Nisan 2023
Gönderilme Tarihi 23 Haziran 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 41 Sayı: 2

Kaynak Göster

Vancouver Akın L, Zeren Y. On innovations of the multivariable fractional Hardy-type inequalities on time scales. SIGMA. 2023;41(2):415-22.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK https://eds.yildiz.edu.tr/sigma/