Derleme
BibTex RIS Kaynak Göster

Two-Dimensional Nanomaterials: An Overview of Their Properties, Synthesis and Applications

Yıl 2022, , 63 - 71, 01.10.2022
https://doi.org/10.35238/sufefd.1103900

Öz

Two-dimensional nanomaterials have attracted much attention in the last two decades because of their unique properties. These materials have versatile properties not only because of the extraordinary properties provided by the nanoscale, but also because of their structures that can go down to atomic thickness. Two-dimensional nanomaterials exhibit better electronic, optical, mechanical, etc. properties than those bulk forms. Because of these properties, these nanomaterials have been widely used in various application fields such as energy conversion/storage, optoelectronic applications, sensor development, various biomedical applications, catalysis, etc. In this review, properties, structures, synthesis methods and application areas of various two-dimensional nanomaterials, especially graphene, will be introduced and discussed.

Kaynakça

  • Allen MJ, Tung, VC, Kaner, RB (2009). Honeycomb Carbon: A Review of Graphene. Chem Rev 110: 132–145.
  • Anasori B, Lukatskaya MR, Gogotsi Y (2017). 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nature Rev Mater 2: 16098.
  • Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015). Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small 11: 640-652.
  • Bridgman PW (1914). Two New Modıfıcatıons of Phosphorus. J Am Chem Soc 36: 1344–1363.
  • Brownson DAC and Banks CE (2014). The Handbook of Graphene Electrochemistry. The Handbook of Graphene Electrochemistry. Sringer, London.
  • Cahangirov S, Topsakal M, Aktürk E, Šahin H, Ciraci S (2009). Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys Rev Lett 102: 236804.
  • Chen LX, Chen ZW, Jiang M, Lu Z, Gao C, Cai G, Singh CV (2021). Insights on the Dual Role of Two-Dimensional Materials as Catalysts and Supports for Energy and Environmental Catalysis. J Mater Chem A. 9: 2018-2042.
  • Chhowalla M, Shin HS, Eda, G, Li L-J, Loh KP, Zhang H (2013). The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chem 5: 263–275.
  • Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, Gogotsi Y, Barsoum MW, Fafarman AT (2016). Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv Funct Mater 26: 4162–4168.
  • Ersan F, Kecik D, Özçelik VO, Kadioğlu Y, Üzengi Aktürk O, Durgun E, Aktürk E, Ciraci S (2019). Two-dimensional pnictogens: A review of recent progresses and future research directions. Appl Phys Rev 6: 021308.
  • Frindt RF (1966). Single Crystals of MoS2 Several Molecular Layers Thick. J Appl Phys 37: 1928–1929.
  • Gablech I, Pekárek J, Klempa J, Svatoš V, Sajedi-Moghaddam A, Neužil P, Pumera M (2018). Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC - Trends in Anal Chem 105, 251-262.
  • Geim AK (2009). Graphene: Status and Prospects. Science 324: 1530–1534.
  • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink, J (2007). Substrate-Induced Band Gap in Graphene on Hexagonal Boron Nitride: Ab Initio Density Functional Calculations. Physi Rev B - Condens Matter Mater Phys 76: 073103.
  • Guzmán-Verri GG and Lew Yan Voon LC (2007). Electronic Structure of Silicon-Based Nanostructures. Phys Rev B - Condens Matter Mater Phys 76: 075131.
  • Han SA, Bhatia R, Kim S-W (2015). Synthesis, Properties and Potential Applications of Two-Dimensional Transition Metal Dichalcogenides. Nano Convergence 2: 17.
  • Han WQ, Wu L, Zhu Y, Watanabe K, Taniguchi T (2008). Structure of Chemically Derived Mono- and Few-Atomic-Layer Boron Nitride Sheets. Appl Phys Lett 93: 223103.
  • Hummers WS and Offeman RE (1958). Preparation of Graphitic Oxide. J Am Chem Soc 80: 1339–1339.
  • Joensen P, Frindt RF, Morrison, SR (1986). Single-Layer MoS2. Mater Res Bul 21: 457–461.
  • Karahan HE, Goh K, Zhang C, Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, Bae, T-H (2020) MXene Materials for Designing Advanced Separation Membranes. Adv Mater 32: 1906697.
  • Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Dresselhaus M, Palacios T, Kong, J (2012). Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6: 8583-8590.
  • Li B, Lai C, Zeng G, Huang D, Qin L, Zhang M, Cheng M, Liu X, Yi H, Zhou C, Huang F, Liu S, Fu, Y (2019). Black Phosphorus, a Rising Star 2D Nanomaterial in the Post-Graphene Era: Synthesis, Properties, Modifications, and Photocatalysis Applications. Small 15: 1804565.
  • Lyu JK, Zhang SF, Zhang CW, Wang PJ (2019). Stanene: A Promising Material for New Electronic and Spintronic Applications. Annalen Der Physik 531: 1900017.
  • Mao S, Pu H, Chen J (2012). Graphene Oxide and Its Reduction: Modeling and Experimental Progress. RSC Adv 2: 2643-2662.
  • Mason TJ, Lorimer JP (2002). Applied Sonochemistry. Applied Sonochemistry. Wiley.
  • Meshkian R, Näslund LÅ, Halim J, Lu J, Barsoum MW, Rosen J (2015). Synthesis of Two-Dimensional Molybdenum Carbide, Mo2C, from the Gallium Based Atomic Laminate Mo2Ga2C. Scripta Materialia 108: 147–150.
  • Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D (2018). Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47: 6370-6387.
  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum, MW. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23: 4248-4253.
  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008). Fine structure constant defines visual transparency of graphene. Science 320: 1308.
  • Niu L, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng Z (2016). Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small 12: 272-293.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva I V, Firsov AA (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666–669.
  • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001). Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 39: 507–514.
  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009). Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed 48: 7752–7777.
  • Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009). Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces. Nano Res 2: 509–516.
  • Sang X, Xie Y, Lin M-W, Alhabeb M, Van Aken KL, Gogotsi Y, Kent PRC, Xiao K, Unocic RR (2016). Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 10: 9193–9200.
  • Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan, PM (2010). Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett 10: 3209–3215.
  • Takeda K, Shiraishi K (1994). Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphite. Phys Rev B 50: 14916–14922.
  • Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang, H (2017). Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem Rev 117: 6225-6331.
  • Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C, Zhang H, Farokhzad OC, Kim, JS (2019). Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev 48: 2891-2912.
  • Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012). Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys Rev Lett 108: 155501.
  • Wallace PR (1947). The Band Theory of Graphite. Phys Rev 71: 622-634.
  • Wang T, Wang H, Kou Z, Liang W, Luo X, Verpoort F, Zeng Y-J, Zhang H (2020). Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. Adv Funct Mater 30: 2002885.
  • Yu X, Liang W, Xing C, Chen K, Chen J, Huang W, Xie N, Qiu M, Yan X, Xie Z, Zhang H (2020). Emerging 2D pnictogens for catalytic applications: status and challenges. J Mater Chem A 8: 12887-12927.
  • Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, Ou JZ (2020). Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett 12: 66.
  • Zhao ZY, Liu QL (2018). Study of the Layer-Dependent Properties of MoS2 Nanosheets with Different Crystal Structures by DFT Calculations. Catal Sci Technol 8: 1867–1879.
  • Zhou J, Zha X, Chen FY, Ye Q, Eklund P, Du S, Huang Q (2016). A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. Angewandte Chemie 128: 5092–5097.

İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış

Yıl 2022, , 63 - 71, 01.10.2022
https://doi.org/10.35238/sufefd.1103900

Öz

İki-Boyutlu nanomalzemeler, sahip oldukları eşsiz özelliklerden dolayı son yirmi yılda oldukça fazla dikkat çekmişlerdir. Bu malzemeler, sadece nano ölçeğin sağladığı sıra dışı özelliklerden değil aynı zamanda atom kalınlığına kadar inebilen yapıları nedeniyle çok yönlü özelliklere sahiptirler. İki-boyutlu nanomalzemeler elde edildikleri katmanlı formlarından çok daha üstün elektronik, optik, mekanik, vb. özellikler sergilemektedirler. Bu özelliklerinden dolayı, bu nanomalzemeler enerji üretimi/depolama, optoelektronik uygulamalar, sensör geliştirme, çeşitli biyomedikal uygulamalar, kataliz, vb. birçok alanda yaygın bir şekilde kullanılmaktadırlar. Bu derleme çalışmasında, başta grafen olmak üzere çeşitli iki-boyutlu nanomalzemelerin özellikleri, yapıları, sentez yöntemleri ve uygulama alanları hakkında çeşitli bilgiler verilecektir.

Kaynakça

  • Allen MJ, Tung, VC, Kaner, RB (2009). Honeycomb Carbon: A Review of Graphene. Chem Rev 110: 132–145.
  • Anasori B, Lukatskaya MR, Gogotsi Y (2017). 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nature Rev Mater 2: 16098.
  • Balendhran S, Walia S, Nili H, Sriram S, Bhaskaran M (2015). Elemental Analogues of Graphene: Silicene, Germanene, Stanene, and Phosphorene. Small 11: 640-652.
  • Bridgman PW (1914). Two New Modıfıcatıons of Phosphorus. J Am Chem Soc 36: 1344–1363.
  • Brownson DAC and Banks CE (2014). The Handbook of Graphene Electrochemistry. The Handbook of Graphene Electrochemistry. Sringer, London.
  • Cahangirov S, Topsakal M, Aktürk E, Šahin H, Ciraci S (2009). Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys Rev Lett 102: 236804.
  • Chen LX, Chen ZW, Jiang M, Lu Z, Gao C, Cai G, Singh CV (2021). Insights on the Dual Role of Two-Dimensional Materials as Catalysts and Supports for Energy and Environmental Catalysis. J Mater Chem A. 9: 2018-2042.
  • Chhowalla M, Shin HS, Eda, G, Li L-J, Loh KP, Zhang H (2013). The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chem 5: 263–275.
  • Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, Gogotsi Y, Barsoum MW, Fafarman AT (2016). Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv Funct Mater 26: 4162–4168.
  • Ersan F, Kecik D, Özçelik VO, Kadioğlu Y, Üzengi Aktürk O, Durgun E, Aktürk E, Ciraci S (2019). Two-dimensional pnictogens: A review of recent progresses and future research directions. Appl Phys Rev 6: 021308.
  • Frindt RF (1966). Single Crystals of MoS2 Several Molecular Layers Thick. J Appl Phys 37: 1928–1929.
  • Gablech I, Pekárek J, Klempa J, Svatoš V, Sajedi-Moghaddam A, Neužil P, Pumera M (2018). Monoelemental 2D materials-based field effect transistors for sensing and biosensing: Phosphorene, antimonene, arsenene, silicene, and germanene go beyond graphene. TrAC - Trends in Anal Chem 105, 251-262.
  • Geim AK (2009). Graphene: Status and Prospects. Science 324: 1530–1534.
  • Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, Van Den Brink, J (2007). Substrate-Induced Band Gap in Graphene on Hexagonal Boron Nitride: Ab Initio Density Functional Calculations. Physi Rev B - Condens Matter Mater Phys 76: 073103.
  • Guzmán-Verri GG and Lew Yan Voon LC (2007). Electronic Structure of Silicon-Based Nanostructures. Phys Rev B - Condens Matter Mater Phys 76: 075131.
  • Han SA, Bhatia R, Kim S-W (2015). Synthesis, Properties and Potential Applications of Two-Dimensional Transition Metal Dichalcogenides. Nano Convergence 2: 17.
  • Han WQ, Wu L, Zhu Y, Watanabe K, Taniguchi T (2008). Structure of Chemically Derived Mono- and Few-Atomic-Layer Boron Nitride Sheets. Appl Phys Lett 93: 223103.
  • Hummers WS and Offeman RE (1958). Preparation of Graphitic Oxide. J Am Chem Soc 80: 1339–1339.
  • Joensen P, Frindt RF, Morrison, SR (1986). Single-Layer MoS2. Mater Res Bul 21: 457–461.
  • Karahan HE, Goh K, Zhang C, Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, Bae, T-H (2020) MXene Materials for Designing Advanced Separation Membranes. Adv Mater 32: 1906697.
  • Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Dresselhaus M, Palacios T, Kong, J (2012). Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6: 8583-8590.
  • Li B, Lai C, Zeng G, Huang D, Qin L, Zhang M, Cheng M, Liu X, Yi H, Zhou C, Huang F, Liu S, Fu, Y (2019). Black Phosphorus, a Rising Star 2D Nanomaterial in the Post-Graphene Era: Synthesis, Properties, Modifications, and Photocatalysis Applications. Small 15: 1804565.
  • Lyu JK, Zhang SF, Zhang CW, Wang PJ (2019). Stanene: A Promising Material for New Electronic and Spintronic Applications. Annalen Der Physik 531: 1900017.
  • Mao S, Pu H, Chen J (2012). Graphene Oxide and Its Reduction: Modeling and Experimental Progress. RSC Adv 2: 2643-2662.
  • Mason TJ, Lorimer JP (2002). Applied Sonochemistry. Applied Sonochemistry. Wiley.
  • Meshkian R, Näslund LÅ, Halim J, Lu J, Barsoum MW, Rosen J (2015). Synthesis of Two-Dimensional Molybdenum Carbide, Mo2C, from the Gallium Based Atomic Laminate Mo2Ga2C. Scripta Materialia 108: 147–150.
  • Molle A, Grazianetti C, Tao L, Taneja D, Alam MH, Akinwande D (2018). Silicene, silicene derivatives, and their device applications. Chem Soc Rev 47: 6370-6387.
  • Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum, MW. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23: 4248-4253.
  • Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008). Fine structure constant defines visual transparency of graphene. Science 320: 1308.
  • Niu L, Coleman JN, Zhang H, Shin H, Chhowalla M, Zheng Z (2016). Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small 12: 272-293.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva I V, Firsov AA (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306: 666–669.
  • Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001). Specific Surface Area of Carbon Nanotubes and Bundles of Carbon Nanotubes. Carbon 39: 507–514.
  • Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009). Graphene: The New Two-Dimensional Nanomaterial. Angew Chem Int Ed 48: 7752–7777.
  • Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009). Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces. Nano Res 2: 509–516.
  • Sang X, Xie Y, Lin M-W, Alhabeb M, Van Aken KL, Gogotsi Y, Kent PRC, Xiao K, Unocic RR (2016). Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. ACS Nano 10: 9193–9200.
  • Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan, PM (2010). Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett 10: 3209–3215.
  • Takeda K, Shiraishi K (1994). Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphite. Phys Rev B 50: 14916–14922.
  • Tan C, Cao X, Wu X-J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G-H, Sindoro M, Zhang, H (2017). Recent Advances in Ultrathin Two-Dimensional Nanomaterials. Chem Rev 117: 6225-6331.
  • Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C, Zhang H, Farokhzad OC, Kim, JS (2019). Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev 48: 2891-2912.
  • Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012). Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys Rev Lett 108: 155501.
  • Wallace PR (1947). The Band Theory of Graphite. Phys Rev 71: 622-634.
  • Wang T, Wang H, Kou Z, Liang W, Luo X, Verpoort F, Zeng Y-J, Zhang H (2020). Xenes as an Emerging 2D Monoelemental Family: Fundamental Electrochemistry and Energy Applications. Adv Funct Mater 30: 2002885.
  • Yu X, Liang W, Xing C, Chen K, Chen J, Huang W, Xie N, Qiu M, Yan X, Xie Z, Zhang H (2020). Emerging 2D pnictogens for catalytic applications: status and challenges. J Mater Chem A 8: 12887-12927.
  • Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, Ou JZ (2020). Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications. Nano-Micro Lett 12: 66.
  • Zhao ZY, Liu QL (2018). Study of the Layer-Dependent Properties of MoS2 Nanosheets with Different Crystal Structures by DFT Calculations. Catal Sci Technol 8: 1867–1879.
  • Zhou J, Zha X, Chen FY, Ye Q, Eklund P, Du S, Huang Q (2016). A Two-Dimensional Zirconium Carbide by Selective Etching of Al3C3 from Nanolaminated Zr3Al3C5. Angewandte Chemie 128: 5092–5097.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme Makaleleri
Yazarlar

Sadık Çoğal 0000-0001-8904-1332

Yayımlanma Tarihi 1 Ekim 2022
Gönderilme Tarihi 15 Nisan 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Çoğal, S. (2022). İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 48(2), 63-71. https://doi.org/10.35238/sufefd.1103900
AMA Çoğal S. İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış. sufefd. Ekim 2022;48(2):63-71. doi:10.35238/sufefd.1103900
Chicago Çoğal, Sadık. “İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri Ve Uygulama Alanları Üzerine Genel Bir Bakış”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 48, sy. 2 (Ekim 2022): 63-71. https://doi.org/10.35238/sufefd.1103900.
EndNote Çoğal S (01 Ekim 2022) İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 48 2 63–71.
IEEE S. Çoğal, “İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış”, sufefd, c. 48, sy. 2, ss. 63–71, 2022, doi: 10.35238/sufefd.1103900.
ISNAD Çoğal, Sadık. “İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri Ve Uygulama Alanları Üzerine Genel Bir Bakış”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 48/2 (Ekim 2022), 63-71. https://doi.org/10.35238/sufefd.1103900.
JAMA Çoğal S. İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış. sufefd. 2022;48:63–71.
MLA Çoğal, Sadık. “İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri Ve Uygulama Alanları Üzerine Genel Bir Bakış”. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, c. 48, sy. 2, 2022, ss. 63-71, doi:10.35238/sufefd.1103900.
Vancouver Çoğal S. İki-Boyutlu Nanomalzemeler: Özellikleri, Sentez Yöntemleri ve Uygulama Alanları Üzerine Genel Bir Bakış. sufefd. 2022;48(2):63-71.

Dergi Sahibi: Selçuk Üniversitesi Fen Fakültesi Adına Rektör Prof. Dr. Hüseyin YILMAZ
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.
2016 yılından itibaren DergiPark’ta taranmaktadır.


88x31.png

Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı (CC BY-NC 4.0) ile lisanslanmıştır.