The new compounds, Mg(BiO2)4 was synthesized and structurally characterized semiconductor. Due to theoretical investigation for both of Mg(BiO2)4 and Mg(Bi0.91Ge0.083O2)4, computational tools were used. To calculated the electronic band structures, the total density of state, the partial density of state, and optical properties were used Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhoff (PBE0) using first principle method for Mg(BiO2)4. The band gap was recorded 0.545 eV which is supported for good semiconductor. The density of states was simulated for evaluating the nature of 3s, 3p for Mg, 6s 6p, 4d, and 2s, 2p for O atoms. Furthermore, the optical properties including absorption, reflection, refractive index, conductivity, dielectric function, and loss function were simulated which can account for the superior absorption of the visible light. The key point of this research to determine the activity of Ge doped by 11.0%, whereas the band gap, density of state, and optical properties were affected. Analysis of the band gap and optical properties of both of Mg (BiO2)4 and Mg(Bi0.91Ge0.083O2)4, the Ge doped shows the high conductivity than undoped.
Primary Language | English |
---|---|
Subjects | Chemical Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | June 15, 2020 |
Submission Date | January 14, 2020 |
Published in Issue | Year 2020 |
Journal Full Title: Turkish Computational and Theoretical Chemistry
Journal Abbreviated Title: Turkish Comp Theo Chem (TC&TC)