We present a quantum chemical study of three
small boron nitride clusters B2N2, B3N3
and B4N4. Their structure and electronic characteristics
are calculated by means of the coupled cluster (CC) and density functional
theory (DFT) techniques. In order to find the best match with the coupled
cluster data the twenty-four DFT exchange-corrected functionals are analyzed.
According to our results, B3P86V5 and B97 functionals reproduce well the
geometry of small boron-nitrides, whereas for the electronic characteristics OP
and VWN functionals give the closest to CC results. Note that prevalent B3LYP
and PBE0 DFT-functionals demonstrate lower accuracy.
[2] W. Krätschmer, D. R. Huffman, Fullerites: New forms of crystalline carbon, Carbon 30 (1992) 1143–1147.
[3] E. A. Belenkov, V. A. Greshnyakov, New structural modifications of diamond: LA9, LA10, and CA12, Journal of Experimental and Theoretical Physics 119 (2014) 101–106.
[4] V. A. Greshnyakov, E. A. Belenkov, Structures of diamond-like phases, Journal of Experimental and Theoretical Physics 113 (2011) 86–95.
[5] Y. A. Kvashnina, A. G. Kvashnin, P. B. Sorokin, Investigation of new superhard carbon allotropes with promising electronic properties, Journal of Applied Physics 114 (2013) 183708.
[6] Yu. A. Kvashnina, A. G. Kvashnin, M. Yu. Popov, B. A. Kulnitskiy, I. A. Perezhogin, E. V. Tyukalova, L. A. Chernozatonskii, P. B. Sorokin, V. D. Blank, Toward the Ultra-incompressible Carbon Materials. Computational Simulation and Experimental Observation, Journal of Physical Chemistry Letters 6 (2015) 2147–2152.
[7] R. A. Brazhe, A. A. Karenin, A. I. Kochaev, R. M. Meftakhutdinov, Elastic characteristics of 2D carbon supracrystals as compared to graphene, Physics of the Solid State 53 (2011) 1481–1483.
[8] R. A. Brazhe, A. I. Kochaev, V. S. Nefedov, Young’s modulus and the Poisson’s ratio of planar and nanotubular supracrystalline structures, Physics of the Solid State 54 (2012) 1430–1432.
[9] G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Tetra‐tert‐butyltetrahedrane, Angewandte Chemie International Edition 17 (1978) 520–521.
[10] G. Maier, D. Born, Tri‐tert‐butyl(trimethylsilyl)tricyclo[1.1.0.02, 4]‐butane–a Second Tetrahedrane Derivative, Angewandte Chemie International Edition 28 (1989) 1050–1052.
[11] T. J. Katz, N. Acton, Synthesis of prismane, Journal of the American Chemical Society 95 (1973) 2738–2739.
[12] P. E. Eaton, T. W. Cole, Cubane, Journal of the American Chemical Society 86 (1964) 3157–3158.
[13] P. E. Eaton, Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century, Angewandte Chemie International Edition 31 (1992) 1421–1436.
[14] K. A. Lukin, J. Li, P. E. Eaton, N. Kanomata, J. Hain, E. Punzalan, R. Gilardi, Synthesis and chemistry of 1,3,5,7-tetranitrocubane including measurement of its acidity, formation of o-nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane, Journal of the American Chemical Society 119 (1997) 9591–9602.
[15] M. X. Zhang, P. E. Eaton, R. Gilardi, Hepta- and octanitrocubanes, Angewandte Chemie International Edition39 (2000) 401–404.
[16] P. E. Eaton, M. X. Zhang, R. Gilardi, N. Gelber, S. Iyer, R. Surapaneni, Octanitrocubane: A new nitrocarbon, Propellants, Explosives, Pyrotechnics 27 (2002) 1–6.
[17] P. E. Eaton, Y. S. Or, S. J. Branca, Pentaprismane, Journal of the American Chemical Society 103 (1981) 2134–2136.
[18] F. Pichierri, Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon, Chemical Physics Letters 612 (2014) 198–202.
[19] C. Killblane, Y. Gao, N. Shao, X. C. Zeng, Search for Lowest-Energy Nonclassical Fullerenes III: C22, Journal of Physical Chemistry A 113 (2009) 8839–8844.
[20] W. An, N. Shao, S. Bulusu, X. C. Zeng, Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24, Journal of Chemical Physics 128 (2008) 084301.
[21] J. An, L. H. Gan, J. Q. Zhao, R. Li, A global search for the lowest energy isomer of C26, Journal of Chemical Physics 132 (2010) 154304.
[22] W. W. Wang, J. S. Dang, X. Zhao, Impact of tetragonal rings on the stability of small fullerenes encapsulated with noble gas: A density functional theory survey, Chemical Physics Letters 536 (2012) 77–81.
[23] Y. A. Kvashnina, D. G. Kvashnin, A. G. Kvashnin, P. B. Sorokin, New allotropic forms of carbon based on С60 and С20 fullerenes with specific mechanical characteristics, JETP Letters 105 (2017) 419–425.
[24] D. S. Lisovenko, J. A. Baimova, L. K. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, S. V. Dmitriev, Equilibrium diamond-like carbon nanostructures with cubic anisotropy: Elastic properties, Physica Status Solidi B 253 (2016) 1295–1302.
[25] X. Xia, D. A. Jelski, J. R. Bowser, T. F. George, MNDO Study of Boron-Nitrogen Analogs of Buckminsterfullerene, Journal of the American Chemical Society 114 (1992) 6493–6496.
[26] E. J. Hamilton, S. E. Dolan, C. M. Mann, H. O. Colijn, C. a McDonald, S. G. Shore, Preparation of amorphous boron nitride and its conversion to a turbostratic, tubular form, Science 260 (1993) 659–661.
[27] A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge, Physical Review Letters 76 (1996) 4737–4740.
[28] L. Bourgeois, Y. Bando, S. Shinozaki, K. Kurashima, T. Sato, Boron nitride cones: structure determination by transmission electron microscopy, Acta Crystallographica A 55 (1999) 168–177.
[29] L. Bourgeois, Y. Bando, W. Han, T. Sato, Structure of boron nitride nanoscale cones: Ordered stacking of 240° and 300° disclinations, Physical Review B 61 (2000) 7686–7691.
[30] K. Terauchi, M., Tanaka, M., Suzuki, K., Ogino, A., Kimura, Nanotubes, Production of zigzag-type BN Annealing, and BN cones by thermal, Chemical Physics Letters 324 (2000) 359–364.
[31] M. T. Baei, H. Mohammadian, S. Hashemian, B12N12 nanocage as a potential adsorbent for the removal of aniline from environmental systems, Bulgarian Chemical Communications 46 (2014) 735–742.
[32] M. D. Esrafili, S. Chashmniam, V. Alizadeh, A DFT Study of Hydrogen Adsorption on Ln@B16N16 Fullerene-Like Nanocage (Ln: La, Gd and Lu), Fullerenes, Nanotubes and Carbon Nanostructures 22 (2014) 928–937.
[33] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785–789.
[34] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics 98 (1993) 5648–5652.
[35] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865–3868.
[36] J. G. Brandenburg, T. Maas, S. Grimme, Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs, Journal of Chemical Physics 142 (2015) 124104.
[37] É. Brémond, M. Savarese, N. Q. Su, Á. J. Pérez-Jiménez, X. Xu, J. C. Sancho-García, C. Adamo, Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules, Journal of Chemical Theory and Computation 12 (2016) 459–465.
[38] D. Karakas, Theoretical investigation on electrophilicity indexes and proton affinities of some boron-nitrogen open-chain species, Turkish Computational and Theoretical Chemistry 1 (2017) 1–10.
[39] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Reprint of: A fifth-order perturbation comparison of electron correlation theories, Chemical Physics Letters 589 (2013) 37–40.
[40] H. J. Monkhorst, Calculation of properties with the coupled‐cluster method, International Journal of Quantum Chemistry 12 (1977) 421–432.
[41] P. Piecuch, S. A. Kucharski, K. Kowalski, M. Musiał, Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches, Computer Physics Communications 149 (2002) 71–96.
[42] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica 1 (1934) 104–113.
[43] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, Journal of Chemical Physics 98 (1994) 11623–11627.
[44] A. D. Becke, Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals, Journal of Chemical Physics 107 (1997) 8554-8560.
[45] P. J. Wilson, T. J. Bradley, D. J. Tozer, Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials, Journal of Chemical Physics 115 (2001) 9233-9242.
[46] T. W. Keal, D. J. Tozer, Semiempirical hybrid functional with improved performance in an extensive chemical assessment, Journal of Chemical Physics 123 (2005) 121103.
[47] A. D. Boese, J. M. L. Martin, Development of density functionals for thermochemical kinetics, Journal of Chemical Physics 121 (2004) 3405-3416.
[48] T. Yanai, D. P. Tew, N. C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters 393 (2004) 51–57.
[49] T. Tsuneda, K. Hirao, A new spin-polarized Colle-Salvetti-type correlation energy functional, Chemical Physics Letters 268 (1997) 510-520.
[50] R. Peverati, D. G. Truhlar, Improving the accuracy of hybrid meta-GGA density functionals by range separation, Journal of Physical Chemistry Letters 2 (2011) 2810-2817.
[51] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, Journal of Chemical Physics 110 (1999) 6158-6170.
[52] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron gas correlation energy, Physical Review B 45 (1992) 13244–13249.
[53] S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (1980) 1200-1211.
[54] P. Salek, A. Hesselmann, A self-contained and portable density functional theory library for use in Ab Initio quantum chemistry programs, Journal of Computational Chemistry 28 (2007) 2569-2575.
[55] J. D. Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals, Journal of Chemical Physics 128 (2008) 084106.
[56] J. D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections, Physical Chemistry Chemical Physics 10 (2008) 6615-6620.
[57] X. Xu, Q. Zhang, R. P. Muller, W. A. Goddard, An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems, Journal of Chemical Physics 122 (2005) 014105.
[58] K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless Density Functional Theory, Physical Review Letters 103 (2009) 263201.
[59] Y. Zhao, N. E. Schultz, D. G. Truhlar, Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions, Journal of Chemical Physics 123 (2005) 161103.
[60] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts 120 (2007) 215-241.
[61] T. Helgaker, P. Jorgensen, J. Olsen. Molecular Electronic-Structure Theory. Wiley: New York, 2000, 793-796.
[62] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, Journal of Chemical Physics 72 (1980) 650–654.
[63] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr, General atomic and molecular electronic structure system, Journal of Computational Chemistry 14 (1993) 1347–1363.
[64] F. Jensen, The stability of cage and ring isomers for carbon and boron nitride clusters, Chemical Physics Letters 209 (1993) 417–422.
[65] M. R. Manaa, A comparative study of cubic B4N4 and C8, Journal of Molecular Structure: THEOCHEM 549 (2001) 23–26.
Year 2017,
Volume: 1 Issue: 2, 27 - 34, 15.12.2017
[2] W. Krätschmer, D. R. Huffman, Fullerites: New forms of crystalline carbon, Carbon 30 (1992) 1143–1147.
[3] E. A. Belenkov, V. A. Greshnyakov, New structural modifications of diamond: LA9, LA10, and CA12, Journal of Experimental and Theoretical Physics 119 (2014) 101–106.
[4] V. A. Greshnyakov, E. A. Belenkov, Structures of diamond-like phases, Journal of Experimental and Theoretical Physics 113 (2011) 86–95.
[5] Y. A. Kvashnina, A. G. Kvashnin, P. B. Sorokin, Investigation of new superhard carbon allotropes with promising electronic properties, Journal of Applied Physics 114 (2013) 183708.
[6] Yu. A. Kvashnina, A. G. Kvashnin, M. Yu. Popov, B. A. Kulnitskiy, I. A. Perezhogin, E. V. Tyukalova, L. A. Chernozatonskii, P. B. Sorokin, V. D. Blank, Toward the Ultra-incompressible Carbon Materials. Computational Simulation and Experimental Observation, Journal of Physical Chemistry Letters 6 (2015) 2147–2152.
[7] R. A. Brazhe, A. A. Karenin, A. I. Kochaev, R. M. Meftakhutdinov, Elastic characteristics of 2D carbon supracrystals as compared to graphene, Physics of the Solid State 53 (2011) 1481–1483.
[8] R. A. Brazhe, A. I. Kochaev, V. S. Nefedov, Young’s modulus and the Poisson’s ratio of planar and nanotubular supracrystalline structures, Physics of the Solid State 54 (2012) 1430–1432.
[9] G. Maier, S. Pfriem, U. Schäfer, R. Matusch, Tetra‐tert‐butyltetrahedrane, Angewandte Chemie International Edition 17 (1978) 520–521.
[10] G. Maier, D. Born, Tri‐tert‐butyl(trimethylsilyl)tricyclo[1.1.0.02, 4]‐butane–a Second Tetrahedrane Derivative, Angewandte Chemie International Edition 28 (1989) 1050–1052.
[11] T. J. Katz, N. Acton, Synthesis of prismane, Journal of the American Chemical Society 95 (1973) 2738–2739.
[12] P. E. Eaton, T. W. Cole, Cubane, Journal of the American Chemical Society 86 (1964) 3157–3158.
[13] P. E. Eaton, Cubanes: Starting Materials for the Chemistry of the 1990s and the New Century, Angewandte Chemie International Edition 31 (1992) 1421–1436.
[14] K. A. Lukin, J. Li, P. E. Eaton, N. Kanomata, J. Hain, E. Punzalan, R. Gilardi, Synthesis and chemistry of 1,3,5,7-tetranitrocubane including measurement of its acidity, formation of o-nitro anions, and the first preparations of pentanitrocubane and hexanitrocubane, Journal of the American Chemical Society 119 (1997) 9591–9602.
[15] M. X. Zhang, P. E. Eaton, R. Gilardi, Hepta- and octanitrocubanes, Angewandte Chemie International Edition39 (2000) 401–404.
[16] P. E. Eaton, M. X. Zhang, R. Gilardi, N. Gelber, S. Iyer, R. Surapaneni, Octanitrocubane: A new nitrocarbon, Propellants, Explosives, Pyrotechnics 27 (2002) 1–6.
[17] P. E. Eaton, Y. S. Or, S. J. Branca, Pentaprismane, Journal of the American Chemical Society 103 (1981) 2134–2136.
[18] F. Pichierri, Hypercubane: DFT-based prediction of an Oh-symmetric double-shell hydrocarbon, Chemical Physics Letters 612 (2014) 198–202.
[19] C. Killblane, Y. Gao, N. Shao, X. C. Zeng, Search for Lowest-Energy Nonclassical Fullerenes III: C22, Journal of Physical Chemistry A 113 (2009) 8839–8844.
[20] W. An, N. Shao, S. Bulusu, X. C. Zeng, Ab initio calculation of carbon clusters. II. Relative stabilities of fullerene and nonfullerene C24, Journal of Chemical Physics 128 (2008) 084301.
[21] J. An, L. H. Gan, J. Q. Zhao, R. Li, A global search for the lowest energy isomer of C26, Journal of Chemical Physics 132 (2010) 154304.
[22] W. W. Wang, J. S. Dang, X. Zhao, Impact of tetragonal rings on the stability of small fullerenes encapsulated with noble gas: A density functional theory survey, Chemical Physics Letters 536 (2012) 77–81.
[23] Y. A. Kvashnina, D. G. Kvashnin, A. G. Kvashnin, P. B. Sorokin, New allotropic forms of carbon based on С60 and С20 fullerenes with specific mechanical characteristics, JETP Letters 105 (2017) 419–425.
[24] D. S. Lisovenko, J. A. Baimova, L. K. Rysaeva, V. A. Gorodtsov, A. I. Rudskoy, S. V. Dmitriev, Equilibrium diamond-like carbon nanostructures with cubic anisotropy: Elastic properties, Physica Status Solidi B 253 (2016) 1295–1302.
[25] X. Xia, D. A. Jelski, J. R. Bowser, T. F. George, MNDO Study of Boron-Nitrogen Analogs of Buckminsterfullerene, Journal of the American Chemical Society 114 (1992) 6493–6496.
[26] E. J. Hamilton, S. E. Dolan, C. M. Mann, H. O. Colijn, C. a McDonald, S. G. Shore, Preparation of amorphous boron nitride and its conversion to a turbostratic, tubular form, Science 260 (1993) 659–661.
[27] A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard, Boron Nitride Nanotubes with Reduced Numbers of Layers Synthesized by Arc Discharge, Physical Review Letters 76 (1996) 4737–4740.
[28] L. Bourgeois, Y. Bando, S. Shinozaki, K. Kurashima, T. Sato, Boron nitride cones: structure determination by transmission electron microscopy, Acta Crystallographica A 55 (1999) 168–177.
[29] L. Bourgeois, Y. Bando, W. Han, T. Sato, Structure of boron nitride nanoscale cones: Ordered stacking of 240° and 300° disclinations, Physical Review B 61 (2000) 7686–7691.
[30] K. Terauchi, M., Tanaka, M., Suzuki, K., Ogino, A., Kimura, Nanotubes, Production of zigzag-type BN Annealing, and BN cones by thermal, Chemical Physics Letters 324 (2000) 359–364.
[31] M. T. Baei, H. Mohammadian, S. Hashemian, B12N12 nanocage as a potential adsorbent for the removal of aniline from environmental systems, Bulgarian Chemical Communications 46 (2014) 735–742.
[32] M. D. Esrafili, S. Chashmniam, V. Alizadeh, A DFT Study of Hydrogen Adsorption on Ln@B16N16 Fullerene-Like Nanocage (Ln: La, Gd and Lu), Fullerenes, Nanotubes and Carbon Nanostructures 22 (2014) 928–937.
[33] C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B 37 (1988) 785–789.
[34] A. D. Becke, Density-functional thermochemistry. III. The role of exact exchange, Journal of Chemical Physics 98 (1993) 5648–5652.
[35] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77 (1996) 3865–3868.
[36] J. G. Brandenburg, T. Maas, S. Grimme, Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs, Journal of Chemical Physics 142 (2015) 124104.
[37] É. Brémond, M. Savarese, N. Q. Su, Á. J. Pérez-Jiménez, X. Xu, J. C. Sancho-García, C. Adamo, Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules, Journal of Chemical Theory and Computation 12 (2016) 459–465.
[38] D. Karakas, Theoretical investigation on electrophilicity indexes and proton affinities of some boron-nitrogen open-chain species, Turkish Computational and Theoretical Chemistry 1 (2017) 1–10.
[39] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Reprint of: A fifth-order perturbation comparison of electron correlation theories, Chemical Physics Letters 589 (2013) 37–40.
[40] H. J. Monkhorst, Calculation of properties with the coupled‐cluster method, International Journal of Quantum Chemistry 12 (1977) 421–432.
[41] P. Piecuch, S. A. Kucharski, K. Kowalski, M. Musiał, Efficient computer implementation of the renormalized coupled-cluster methods: The R-CCSD[T], R-CCSD(T), CR-CCSD[T], and CR-CCSD(T) approaches, Computer Physics Communications 149 (2002) 71–96.
[42] T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica 1 (1934) 104–113.
[43] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, Journal of Chemical Physics 98 (1994) 11623–11627.
[44] A. D. Becke, Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals, Journal of Chemical Physics 107 (1997) 8554-8560.
[45] P. J. Wilson, T. J. Bradley, D. J. Tozer, Hybrid exchange-correlation functional determined from thermochemical data and ab initio potentials, Journal of Chemical Physics 115 (2001) 9233-9242.
[46] T. W. Keal, D. J. Tozer, Semiempirical hybrid functional with improved performance in an extensive chemical assessment, Journal of Chemical Physics 123 (2005) 121103.
[47] A. D. Boese, J. M. L. Martin, Development of density functionals for thermochemical kinetics, Journal of Chemical Physics 121 (2004) 3405-3416.
[48] T. Yanai, D. P. Tew, N. C. Handy, A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters 393 (2004) 51–57.
[49] T. Tsuneda, K. Hirao, A new spin-polarized Colle-Salvetti-type correlation energy functional, Chemical Physics Letters 268 (1997) 510-520.
[50] R. Peverati, D. G. Truhlar, Improving the accuracy of hybrid meta-GGA density functionals by range separation, Journal of Physical Chemistry Letters 2 (2011) 2810-2817.
[51] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, Journal of Chemical Physics 110 (1999) 6158-6170.
[52] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron gas correlation energy, Physical Review B 45 (1992) 13244–13249.
[53] S. H. Vosko, L. Wilk, M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics 58 (1980) 1200-1211.
[54] P. Salek, A. Hesselmann, A self-contained and portable density functional theory library for use in Ab Initio quantum chemistry programs, Journal of Computational Chemistry 28 (2007) 2569-2575.
[55] J. D. Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals, Journal of Chemical Physics 128 (2008) 084106.
[56] J. D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections, Physical Chemistry Chemical Physics 10 (2008) 6615-6620.
[57] X. Xu, Q. Zhang, R. P. Muller, W. A. Goddard, An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems, Journal of Chemical Physics 122 (2005) 014105.
[58] K. Pernal, R. Podeszwa, K. Patkowski, K. Szalewicz, Dispersionless Density Functional Theory, Physical Review Letters 103 (2009) 263201.
[59] Y. Zhao, N. E. Schultz, D. G. Truhlar, Exchange-correlation functional with broad accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions, Journal of Chemical Physics 123 (2005) 161103.
[60] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts 120 (2007) 215-241.
[61] T. Helgaker, P. Jorgensen, J. Olsen. Molecular Electronic-Structure Theory. Wiley: New York, 2000, 793-796.
[62] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, Journal of Chemical Physics 72 (1980) 650–654.
[63] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery Jr, General atomic and molecular electronic structure system, Journal of Computational Chemistry 14 (1993) 1347–1363.
[64] F. Jensen, The stability of cage and ring isomers for carbon and boron nitride clusters, Chemical Physics Letters 209 (1993) 417–422.
[65] M. R. Manaa, A comparative study of cubic B4N4 and C8, Journal of Molecular Structure: THEOCHEM 549 (2001) 23–26.
Katin, K. (2017). Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters. Turkish Computational and Theoretical Chemistry, 1(2), 27-34.
AMA
Katin K. Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters. Turkish Comp Theo Chem (TC&TC). December 2017;1(2):27-34.
Chicago
Katin, Konstantin. “Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters”. Turkish Computational and Theoretical Chemistry 1, no. 2 (December 2017): 27-34.
EndNote
Katin K (December 1, 2017) Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters. Turkish Computational and Theoretical Chemistry 1 2 27–34.
IEEE
K. Katin, “Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters”, Turkish Comp Theo Chem (TC&TC), vol. 1, no. 2, pp. 27–34, 2017.
ISNAD
Katin, Konstantin. “Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters”. Turkish Computational and Theoretical Chemistry 1/2 (December 2017), 27-34.
JAMA
Katin K. Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters. Turkish Comp Theo Chem (TC&TC). 2017;1:27–34.
MLA
Katin, Konstantin. “Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters”. Turkish Computational and Theoretical Chemistry, vol. 1, no. 2, 2017, pp. 27-34.
Vancouver
Katin K. Benchmark Study of the Exchange-Corrected Density Functionals: Application to Strained Boron Nitride Clusters. Turkish Comp Theo Chem (TC&TC). 2017;1(2):27-34.