Araştırma Makalesi
BibTex RIS Kaynak Göster

Morphological and Mechanical Assessment of Electrospun PLGA Vascular Scaffolds

Yıl 2024, Cilt: 34 Sayı: 3, 222 - 230, 30.09.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1284898

Öz

Cardiovascular disorders are the leading cause of global mortality and typically necessitate bypass surgery to replace the damaged blood vessel. Currently used grafts are insufficient to replace small-diameter blood vessels due to the scarcity and harsh harvesting procedure of autologous vessels and the shortcomings in the clinical performance of synthetic grafts, which might result in intimal hyperplasia, thrombosis, and compliance mismatch. Therefore, there is a critical need for tissue-engineered vascular grafts that can meet morphological, mechanical, and biological characteristics. In this study, poly(lactic-co-glycolic acid) tubular scaffolds with randomly distributed or radially oriented fibers were produced by electrospinning, and the effect of fiber orientation on morphological and mechanical properties was investigated. The findings demonstrate that, while the successful implementation of radial fiber orientation with high rotational speed production enhanced burst strength and radial tensile strength values, it was unfavorable for compliance.

Destekleyen Kurum

TUBITAK , ITU

Proje Numarası

121M309 (TUBITAK), 43368 (ITU-BAP), 44230 (ITU-GAP)

Teşekkür

This study is supported by TUBITAK Project under grant no. 121M309, ITU Scientific Research Project under grant no. 43368, and ITU General Research Project under grant no. 44230.

Kaynakça

  • 1. A Nerem, R. M., & Seliktar, D. (2001). Vascular tissue engineering. Annual Review of Biomedical Engineering, 3, 225–243. https://doi.org/10.1146/annurev.bioeng.3.1.225
  • 2. Awad, N. K., Niu, H., Ali, U., Morsi, Y. S., & Lin, T. (2018). Electrospun fibrous scaffolds for small-diameter blood vessels: A review. Membranes 8(1) https://doi.org/10.3390/membranes8010015
  • 3. Ravi, S., & Chaikof, E. L. (2010). Biomaterials for vascular tissue engineering. In Regenerative Medicine (Vol. 5, Issue 1, pp. 107–120). https://doi.org/10.2217/rme.09.77
  • 4. Carrabba, M., & Madeddu, P. (2018). Current strategies for the manufacture of small size tissue engineering vascular grafts. In Frontiers in Bioengineering and Biotechnology (Vol. 6, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2018.00041
  • 5. Teebken, O. E., & Haverich, A. (2002). Tissue Engineering of Small Diameter Vascular Grafts. http://www.idealibrary.com
  • 6. Obiweluozor, F. O., Emechebe, G. A., Kim, D. W., Cho, H. J., Park, C. H., Kim, C. S., & Jeong, I. S. (2020). Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovascular Engineering and Technology, 11(5), 495–521. https://doi.org/10.1007/s13239-020-00482-y
  • 7. Zhao, L., Li, X., Yang, L., Sun, L., Mu, S., Zong, H., Li, Q., Wang, F., Song, S., Yang, C., Zhao, C., Chen, H., Zhang, R., Wang, S., Dong, Y., & Zhang, Q. (2021). Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. Materials Science and Engineering C 118(August 2020). https://doi.org/10.1016/j.msec.2020.111441
  • 8. Safak, S., Vatan, O., Cinkilic, N., & Karaca, E. (2020). In vitro evaluation of electrospun polysaccharide based nanofibrous mats as surgical adhesion barriers. Tekstil ve Konfeksiyon, 30(2), 99–107. https://doi.org/10.32710/tekstilvekonfeksiyon.548460
  • 9. Chen, Y., Dong, X., Shafiq, M., Myles, G., Radacsi, N., & Mo, X. (2022). Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. In Advanced Fiber Materials (Vol. 4, Issue 5, pp. 959–986). Springer. https://doi.org/10.1007/s42765-022-00170-7
  • 10. Sancak, E. , Ozen, M. S. , Erdem, R. , Yılmaz, A. C. , Yuksek, M. , Soın, N. & Shah, T. (2018). PA6/SILVER BLENDS: INVESTIGATION OF MECHANICAL AND ELECTROMAGNETIC SHIELDING BEHAVIOUR OF ELECTROSPUN NANOFIBERS. Tekstil ve Konfeksiyon, 28 (3), 229-235. Retrieved from https://dergipark.org.tr/tr/pub/ tekstilvekonfeksiyon/issue/39534/466846
  • 11. Yalcin Enis, I., & Gok Sadikoglu, T. (2018). Design parameters for electrospun biodegradable vascular grafts. Journal of Industrial Textiles 47 (8), 2205–2227. https://doi.org/10.1177/ 1528083716654470
  • 12. Ozdemir, S., Yalcin-Enis, I., Yalcinkaya, B., & Yalcinkaya, F. (2022). An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. Membranes 12(10), 929. https://doi.org/10.3390/membranes12100929
  • 13. Meng, X., Wang, X., Jiang, Y., Zhang, B., Li, K., & Li, Q. (2019). Suture retention strength of P(LLA-CL) tissue-engineered vascular grafts. RSC Advances 9(37), 21258–21264. https://doi.org/10.1039/c9ra04529e
  • 14. Pérez-Aranda, C., Gamboa, F., Castillo-Cruz, O., Cauich-Rodríguez, J. v., & Avilés, F. (2019). Design and analysis of a burst strength device for testing vascular grafts. Review of Scientific Instruments, 90(1). https://doi.org/10.1063/1.5037578
  • 15. Hiob, M. A., She, S., Muiznieks, L. D., & Weiss, A. S. (2017). Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science and Engineering, 3(5), 712–723. https://doi.org/10.1021/ acsbiomaterials.6b00220
  • 16. Yu, E., Mi, H. Y., Zhang, J., Thomson, J. A., & Turng, L. S. (2018). Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. Journal of Biomedical Materials Research - Part A 106(4), 985–996. https://doi.org/10.1002/jbm.a.36297
  • 17. In Jeong, S., Kim, S. Y., Cho, S. K., Chong, M. S., Kim, K. S., Kim, H., Lee, S. B., & Lee, Y. M. (2007). Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28(6), 1115–1122. https://doi.org/10.1016/j.biomaterials.2006.10.025
  • 18. Malik, S., Sundarrajan, S., Hussain, T., Nazir, A., & Ramakrishna, S. (2021). Fabrication of highly oriented cylindrical polyacrylonitrile, poly(Lactide-co-glycolide), polycaprolactone and poly(vinyl acetate) nanofibers for vascular graft applications. Polymers, 13(13). https://doi.org/10.3390/polym13132075
  • 19. Johnson, J., Ohst, D., Groehl, T., Hetterscheidt, S., & Jones, M. (2015). Development of Novel, Bioresorbable, Small-Diameter Electrospun Vascular Grafts. Journal of Tissue Science & Engineering 6(2). https://doi.org/10.4172/2157-7552.1000151
  • 20. Ozdemir, S. (2023). INVESTIGATION OF MECHANICAL PROPERTIES OF SMALL CALIBER FIBROUS VASCULAR GRAFTS. Istanbul Technical University.
  • 21. Kung, C. H., Sow, P. K., Zahiri, B., & Mérida, W. (2019). Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. In Advanced Materials Interfaces (Vol. 6, Issue 18). Wiley-VCH Verlag. https://doi.org/10.1002/admi.201900839
  • 22. Miranda, M. I. G., Bica, C. I. D., Nachtigall, S. M. B., Rehman, N., & Rosa, S. M. L. (2013). Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC-TGA and MDSC techniques. Thermochimica Acta, 565, 65–71. https://doi.org/10.1016/j.tca.2013.04.012
  • 23. Rasoulianboroujeni, M., Fahimipour, F., Shah, P., Khoshroo, K., Tahriri, M., Eslami, H., Yadegari, A., Dashtimoghadam, E., & Tayebi, L. (2019). Development of 3D-printed PLGA/TiO 2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 96, 105–113. https://doi.org/10.1016/j.msec.2018.10.077
  • 24. Kim, S. H., Mun, C. H., Jung, Y., Kim, S. H., Kim, D. I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ε- caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891. https://doi.org/10.1007/s13233-013-1095-5
  • 25. British Standards Institution. (2017). Cardiovascular implants and extracorporeal systems - vascular prostheses - tubular vascular grafts and vascular patches. British Standards Institution.
  • 26. Stojko, M., Włodarczyk, J., Sobota, M., Karpeta-Jarząbek, P., Pastusiak, M., Janeczek, H., Dobrzyński, P., Starczynowska, G., Orchel, A., Stojko, J., Batoryna, O., Olczyk, P., Komosińska-Vassev, K., Olczyk, K., & Kasperczyk, J. (2020). Biodegradable electrospun nonwovens releasing propolis as a promising dressing material for burn wound treatment. Pharmaceutics, 12(9), 1–18. https://doi.org/10.3390/pharmaceutics12090883
  • 27. Nitti, P., Gallo, N., Natta, L., Scalera, F., Palazzo, B., Sannino, A., & Gervaso, F. (2018). Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. Journal of Healthcare Engineering 2018 (November). https://doi.org/10.1155/2018/3651480
  • 28. Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. In Composites Science and Technology (Vol. 70, Issue 5, pp. 703–718). Elsevier Ltd. https://doi.org/10.1016/j.compscitech.2010.01.010
  • 29. Hu, J. J., Chao, W. C., Lee, P. Y., & Huang, C. H. (2012). Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. Journal of the Mechanical Behavior of Biomedical Materials, 13, 140–155. https://doi.org/10.1016/j.jmbbm.2012.04.013
  • 30. Duan, Y., Kalluri, L., Satpathy, M., & Duan, Y. (2021). Effect of Electrospinning Parameters on the Fiber Diameter and Morphology of PLGA Nanofibers. Dental Oral Biology and Craniofacial Research, 1–7. https://doi.org/10.31487/j.dobcr.2021.02.04
  • 31. Xu, Y., Zou, L., Lu, H., & Kang, T. (2017). Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Advances, 7(7), 4000–4010. https://doi.org/10.1039/c6ra26783a
  • 32. Milleret, V., Hefti, T., Hall, H., Vogel, V., & Eberli, D. (2012). Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomaterialia, 8(12), 4349–4356. https://doi.org/10.1016/j.actbio.2012.07.032
  • 33. Ko, Y. G., Park, J. H., Lee, J. B., Oh, H. H., Park, W. H., Cho, D., & Kwon, O. H. (2016). Growth behavior of endothelial cells according to electrospun poly(D,L-lactic-co-glycolic acid) fiber diameter as a tissue engineering scaffold. Tissue Engineering and Regenerative Medicine, 13(4), 343–351. https://doi.org/10.1007/s13770-016-0053-7
  • 34. You, Y., Min, B. M., Lee, S. J., Lee, T. S., & Park, W. H. (2005). In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 95(2), 193–200. https://doi.org/10.1002/app.21116
  • 35. Herrero-Herrero, M., Gómez-Tejedor, J. A., & Vallés-Lluch, A. (2018). PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. European Polymer Journal, 99, 445–455. https://doi.org/10.1016/j.eurpolymj.2017.12.045
  • 36. Alfaro De Prá, M. A., Ribeiro-do-Valle, R. M., Maraschin, M., & Veleirinho, B. (2017). Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters 193, 154–157. https://doi.org/10.1016/j.matlet.2017.01.102
  • 37. Yuan, H., Zhou, Q., & Zhang, Y. (2017). Improving fiber alignment during electrospinning. Mehdi Afshari (Ed), Electrospun Nanofibers, Woodhead Publishing - Elsevier Inc., 125–147. https://doi.org/10.1016/B978-0-08-100907-9.00006-4
  • 38. Robinson, A. J., Pérez-Nava, A., Ali, S. C., González-Campos, J. B., Holloway, J. L., & Cosgriff-Hernandez, E. M. (2021). Comparative analysis of fiber alignment methods in electrospinning. In Matter (Vol. 4, Issue 3, pp. 821–844). Cell Press. https://doi.org/10.1016/j.matt.2020.12.022
  • 39. Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., Fiorillo, A., Avila, H., Wystrychowski, W., Zagalski, K., Maruszewski, M., Jones, A. L., Cierpka, L., de la Fuente, L. M., & L’Heureux, N. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8), 1542–1550. https://doi.org/10.1016/j.biomaterials.2008.11.011
  • 40. Jin, X., Geng, X., Jia, L., Xu, Z., Ye, L., Gu, Y., … Feng, Z. G. (2019). Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model. Macromolecular Bioscience 19(8). https://doi.org/10.1002/mabi.201900114
  • 41. Yu, Y. H., Lee, D., Hsu, Y. H., Chou, Y. C., Ueng, S. W. N., Chen, C. K., & Liu, S. J. (2020). A three-dimensional printed polycaprolactone scaffold combined with co-axially electrospun vancomycin/ceftazidime/bone morphological protein-2 sheath-core nanofibers for the repair of segmental bone defects during the masquelet procedure. International Journal of Nanomedicine, 15, 913–925. https://doi.org/10.2147/IJN.S238478
  • 42. Zhan, J., Xu, H., Zhong, Y., Wu, Q., & Liu, Z. (2020). Surface modification of patterned electrospun nanofibrous films via the adhesion of DOPA-bFGF and DOPA-ponericin G1 for skin wound healing. Materials and Design, 188. https://doi.org/10.1016/j.matdes.2019.108432
  • 43. Hua, Y., Su, Y., Zhang, H., Liu, N., Wang, Z., Gao, X., Gao, J., & Zheng, A. (2021). Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Delivery, 28(1), 1342–1355. https://doi.org/10.1080/10717544.2021.1943056
  • 44. Ji Lee, E., Ho Lee, J., Cheol Shin, Y., Hwang, D.-G., Soo Kim, J., Seong Jin, O., Jin, L., Won Hong, S., & Han, D.-W. (2014). Graphene Oxide-decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds. In Biomater. Res (Vol. 18, Issue 1).
  • 45. Oztemur, J., Ozdemir, S., & Yalcin-Enis, I. (2022). Effect of blending ratio on morphological, chemical, and thermal characteristics of PLA/PCL and PLLA/PCL electrospun fibrous webs. International Journal of Polymeric Materials and Polymeric Biomaterials. https://doi.org/10.1080/00914037.2022.2090356
  • 46. Mehrasa, M., Asadollahi, M. A., Ghaedi, K., Salehi, H., & Arpanaei, A. (2015). Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. International Journal of Biological Macromolecules, 79, 687–695. https://doi.org/10.1016/j.ijbiomac.2015.05.050
  • 47. Zamani, F., Latifi, M., Amani-Tehran, M., & Shokrgozar, M. A. (2013). Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology. Fibers and Polymers, 14(5), 698–702. https://doi.org/10.1007/s12221-013-0698-y
  • 48. Nath, S. D., Son, S., Sadiasa, A., Min, Y. K., & Lee, B. T. (2013). Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. International Journal of Pharmaceutics, 443(1–2), 87–94. https://doi.org/10.1016/j.ijpharm.2012.12.037
  • 49. Silva, A. T. C. R., Cardoso, B. C. O., Silva, M. E. S. R. e, Freitas, R. F. S., & Sousa, R. G. (2015). Synthesis, Characterization, and Study of PLGA Copolymer in Vitro Degradation. Journal of Biomaterials and Nanobiotechnology, 06(01), 8–19. https://doi.org/10.4236/jbnb.2015.61002
  • 50. Masaeli, R., Kashi, T. S. J., Dinarvand, R., Tahriri, M., Rakhshan, V., & Esfandyari-Manesh, M. (2016). Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres. In Shaheed Beheshti University of Medical Sciences and Health Services Iranian Journal of Pharmaceutical Research.
  • 51. Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2017). Alternative solvent systems for polycaprolactone nanowebs via electrospinning. Journal of Industrial Textiles, 47(1), 57–70. https://doi.org/10.1177/1528083716634032
  • 52. Hasan, M. A., Zaki, M. I., & Pasupulety, L. (2002). Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation.
  • 53. Oztemur, J., & Yalcin-Enis, I. (2021). Development of biodegradable webs of PLA/PCL blends prepared via electrospinning: Morphological, chemical, and thermal characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), 1844–1856. https://doi.org/10.1002/jbm.b.34846
  • 54. Hadjizadeh, A., Ajji, A., & Bureau, M. N. (2011). Nano/micro electro-spun polyethylene terephthalate fibrous mat preparation and characterization. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 340–351. https://doi.org/10.1016/j.jmbbm.2010.10.014
  • 55. Helling, A. L., Viswanathan, P., Cheliotis, K. S., Mobasseri, S. A., Yang, Y., El Haj, A. J., & Watt, F. M. (2019). Dynamic Culture Substrates That Mimic the Topography of the Epidermal-Dermal Junction. Tissue Engineering - Part A, 25(3–4), 214–223. https://doi.org/10.1089/ten.tea.2018.0125
  • 56. Sechi, M., Vanna, S., Roggio, A. M., Siliani, Massimo, P., Salvatore, M., & Mariani, A. (2012). Development of novel cationic chitosan- and anionic alginate–coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. International Journal of Nanomedicine,5501-5516. https://doi.org/10.2147/IJN.S36684
  • 57. Vasita, R., Mani, G., Agrawal, C. M., & Katti, D. S. (2010). Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic® F-108. Polymer, 51(16), 3706–3714. https://doi.org/10.1016/j.polymer.2010.05.048
  • 58. Cohn, D., & Hotovely Salomon, A. (2005). Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials, 26(15), 2297–2305. https://doi.org/10.1016/j.biomaterials.2004.07.052
  • 59. Park, P. I. P., & Jonnalagadda, S. (2006). Predictors of glass transition in the biodegradable polylactide and poly-lactide-co-glycolide polymers. Journal of Applied Polymer Science, 100(3), 1983–1987. https://doi.org/10.1002/app.22135
  • 60. Peng, Z., Ye, L., & Ade, H. (2022). Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: From novices to experts and amorphous to perfect crystals. In Materials Horizons (Vol. 9, Issue 2, pp. 577–606). Royal Society of Chemistry. https://doi.org/10.1039/d0mh00837k
  • 61. Yalcin Enis, I., Horakova, J., Gok Sadikoglu, T., Novak, O., & Lukas, D. (2017). Mechanical investigation of bilayer vascular grafts electrospun from aliphatic polyesters. Polymers for Advanced Technologies 28(2), 201–213. https://doi.org/10.1002/pat.3875
  • 62. Wu, H., Fan, J., Chu, C. C., & Wu, J. (2010). Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. Journal of Materials Science: Materials in Medicine, 21(12), 3207–3215. https://doi.org/10.1007/s10856-010-4164-8
  • 63. Nezarati, R. M., Eifert, M. B., Dempsey, D. K., & Cosgriff-Hernandez, E. (2015). Electrospun vascular grafts with improved compliance matching to native vessels. Journal of Biomedical Materials Research - Part B Applied Biomaterials 103(2), 313–323. https://doi.org/10.1002/jbm.b.33201
  • 64. Rodriguez-Soto, M. A., Suarez, N. A., Riveros, A., Garcia-Brand, A. J., Munoz-Camargo, C., Cruz, J. C., & Briceno, J. C. (2021). Mechanical characterization of novel vascular grafts: Approaching to the native vessel behavior. 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021. https://doi.org/10.1109/CI-IBBI54220.2021.9626102
  • 65. Tang, J., Bao, L., Li, X., Chen, L., & Hong, F. F. (2015). Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. Journal of Materials Chemistry B, 3(43), 8537–8547. https://doi.org/10.1039/c5tb01144b
  • 66. Caves, J. M., Kumar, V. A., Martinez, A. W., Kim, J., Ripberger, C. M., Haller, C. A., & Chaikof, E. L. (2010). The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials, 31(27), 7175–7182. https://doi.org/10.1016/j.biomaterials.2010.05.014
  • 67. Chaparro, F. J., Matusicky, M. E., Allen, M. J., & Lannutti, J. J. (2016). Biomimetic microstructural reorganization during suture retention strength evaluation of electrospun vascular scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 104(8), 1525–1534. https://doi.org/10.1002/jbm.b.33493
  • 68. Grasl, C., Stoiber, M., Röhrich, M., Moscato, F., Bergmeister, H., & Schima, H. (2021). Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas. Materials Science and Engineering C 124. https://doi.org/10.1016/j.msec.2021.112085
  • 69. Ercolani, E., del Gaudio, C., & Bianco, A. (2015). Vascular tissue engineering of small-diameter blood vessels: Reviewing the electrospinning approach. Journal of Tissue Engineering and Regenerative Medicine 9(8), 861–888. https://doi.org/10.1002/term.1697
Yıl 2024, Cilt: 34 Sayı: 3, 222 - 230, 30.09.2024
https://doi.org/10.32710/tekstilvekonfeksiyon.1284898

Öz

Proje Numarası

121M309 (TUBITAK), 43368 (ITU-BAP), 44230 (ITU-GAP)

Kaynakça

  • 1. A Nerem, R. M., & Seliktar, D. (2001). Vascular tissue engineering. Annual Review of Biomedical Engineering, 3, 225–243. https://doi.org/10.1146/annurev.bioeng.3.1.225
  • 2. Awad, N. K., Niu, H., Ali, U., Morsi, Y. S., & Lin, T. (2018). Electrospun fibrous scaffolds for small-diameter blood vessels: A review. Membranes 8(1) https://doi.org/10.3390/membranes8010015
  • 3. Ravi, S., & Chaikof, E. L. (2010). Biomaterials for vascular tissue engineering. In Regenerative Medicine (Vol. 5, Issue 1, pp. 107–120). https://doi.org/10.2217/rme.09.77
  • 4. Carrabba, M., & Madeddu, P. (2018). Current strategies for the manufacture of small size tissue engineering vascular grafts. In Frontiers in Bioengineering and Biotechnology (Vol. 6, Issue APR). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2018.00041
  • 5. Teebken, O. E., & Haverich, A. (2002). Tissue Engineering of Small Diameter Vascular Grafts. http://www.idealibrary.com
  • 6. Obiweluozor, F. O., Emechebe, G. A., Kim, D. W., Cho, H. J., Park, C. H., Kim, C. S., & Jeong, I. S. (2020). Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review. Cardiovascular Engineering and Technology, 11(5), 495–521. https://doi.org/10.1007/s13239-020-00482-y
  • 7. Zhao, L., Li, X., Yang, L., Sun, L., Mu, S., Zong, H., Li, Q., Wang, F., Song, S., Yang, C., Zhao, C., Chen, H., Zhang, R., Wang, S., Dong, Y., & Zhang, Q. (2021). Evaluation of remodeling and regeneration of electrospun PCL/fibrin vascular grafts in vivo. Materials Science and Engineering C 118(August 2020). https://doi.org/10.1016/j.msec.2020.111441
  • 8. Safak, S., Vatan, O., Cinkilic, N., & Karaca, E. (2020). In vitro evaluation of electrospun polysaccharide based nanofibrous mats as surgical adhesion barriers. Tekstil ve Konfeksiyon, 30(2), 99–107. https://doi.org/10.32710/tekstilvekonfeksiyon.548460
  • 9. Chen, Y., Dong, X., Shafiq, M., Myles, G., Radacsi, N., & Mo, X. (2022). Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. In Advanced Fiber Materials (Vol. 4, Issue 5, pp. 959–986). Springer. https://doi.org/10.1007/s42765-022-00170-7
  • 10. Sancak, E. , Ozen, M. S. , Erdem, R. , Yılmaz, A. C. , Yuksek, M. , Soın, N. & Shah, T. (2018). PA6/SILVER BLENDS: INVESTIGATION OF MECHANICAL AND ELECTROMAGNETIC SHIELDING BEHAVIOUR OF ELECTROSPUN NANOFIBERS. Tekstil ve Konfeksiyon, 28 (3), 229-235. Retrieved from https://dergipark.org.tr/tr/pub/ tekstilvekonfeksiyon/issue/39534/466846
  • 11. Yalcin Enis, I., & Gok Sadikoglu, T. (2018). Design parameters for electrospun biodegradable vascular grafts. Journal of Industrial Textiles 47 (8), 2205–2227. https://doi.org/10.1177/ 1528083716654470
  • 12. Ozdemir, S., Yalcin-Enis, I., Yalcinkaya, B., & Yalcinkaya, F. (2022). An Investigation of the Constructional Design Components Affecting the Mechanical Response and Cellular Activity of Electrospun Vascular Grafts. Membranes 12(10), 929. https://doi.org/10.3390/membranes12100929
  • 13. Meng, X., Wang, X., Jiang, Y., Zhang, B., Li, K., & Li, Q. (2019). Suture retention strength of P(LLA-CL) tissue-engineered vascular grafts. RSC Advances 9(37), 21258–21264. https://doi.org/10.1039/c9ra04529e
  • 14. Pérez-Aranda, C., Gamboa, F., Castillo-Cruz, O., Cauich-Rodríguez, J. v., & Avilés, F. (2019). Design and analysis of a burst strength device for testing vascular grafts. Review of Scientific Instruments, 90(1). https://doi.org/10.1063/1.5037578
  • 15. Hiob, M. A., She, S., Muiznieks, L. D., & Weiss, A. S. (2017). Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. ACS Biomaterials Science and Engineering, 3(5), 712–723. https://doi.org/10.1021/ acsbiomaterials.6b00220
  • 16. Yu, E., Mi, H. Y., Zhang, J., Thomson, J. A., & Turng, L. S. (2018). Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach. Journal of Biomedical Materials Research - Part A 106(4), 985–996. https://doi.org/10.1002/jbm.a.36297
  • 17. In Jeong, S., Kim, S. Y., Cho, S. K., Chong, M. S., Kim, K. S., Kim, H., Lee, S. B., & Lee, Y. M. (2007). Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28(6), 1115–1122. https://doi.org/10.1016/j.biomaterials.2006.10.025
  • 18. Malik, S., Sundarrajan, S., Hussain, T., Nazir, A., & Ramakrishna, S. (2021). Fabrication of highly oriented cylindrical polyacrylonitrile, poly(Lactide-co-glycolide), polycaprolactone and poly(vinyl acetate) nanofibers for vascular graft applications. Polymers, 13(13). https://doi.org/10.3390/polym13132075
  • 19. Johnson, J., Ohst, D., Groehl, T., Hetterscheidt, S., & Jones, M. (2015). Development of Novel, Bioresorbable, Small-Diameter Electrospun Vascular Grafts. Journal of Tissue Science & Engineering 6(2). https://doi.org/10.4172/2157-7552.1000151
  • 20. Ozdemir, S. (2023). INVESTIGATION OF MECHANICAL PROPERTIES OF SMALL CALIBER FIBROUS VASCULAR GRAFTS. Istanbul Technical University.
  • 21. Kung, C. H., Sow, P. K., Zahiri, B., & Mérida, W. (2019). Assessment and Interpretation of Surface Wettability Based on Sessile Droplet Contact Angle Measurement: Challenges and Opportunities. In Advanced Materials Interfaces (Vol. 6, Issue 18). Wiley-VCH Verlag. https://doi.org/10.1002/admi.201900839
  • 22. Miranda, M. I. G., Bica, C. I. D., Nachtigall, S. M. B., Rehman, N., & Rosa, S. M. L. (2013). Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC-TGA and MDSC techniques. Thermochimica Acta, 565, 65–71. https://doi.org/10.1016/j.tca.2013.04.012
  • 23. Rasoulianboroujeni, M., Fahimipour, F., Shah, P., Khoshroo, K., Tahriri, M., Eslami, H., Yadegari, A., Dashtimoghadam, E., & Tayebi, L. (2019). Development of 3D-printed PLGA/TiO 2 nanocomposite scaffolds for bone tissue engineering applications. Materials Science and Engineering C, 96, 105–113. https://doi.org/10.1016/j.msec.2018.10.077
  • 24. Kim, S. H., Mun, C. H., Jung, Y., Kim, S. H., Kim, D. I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ε- caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891. https://doi.org/10.1007/s13233-013-1095-5
  • 25. British Standards Institution. (2017). Cardiovascular implants and extracorporeal systems - vascular prostheses - tubular vascular grafts and vascular patches. British Standards Institution.
  • 26. Stojko, M., Włodarczyk, J., Sobota, M., Karpeta-Jarząbek, P., Pastusiak, M., Janeczek, H., Dobrzyński, P., Starczynowska, G., Orchel, A., Stojko, J., Batoryna, O., Olczyk, P., Komosińska-Vassev, K., Olczyk, K., & Kasperczyk, J. (2020). Biodegradable electrospun nonwovens releasing propolis as a promising dressing material for burn wound treatment. Pharmaceutics, 12(9), 1–18. https://doi.org/10.3390/pharmaceutics12090883
  • 27. Nitti, P., Gallo, N., Natta, L., Scalera, F., Palazzo, B., Sannino, A., & Gervaso, F. (2018). Influence of nanofiber orientation on morphological and mechanical properties of electrospun chitosan mats. Journal of Healthcare Engineering 2018 (November). https://doi.org/10.1155/2018/3651480
  • 28. Baji, A., Mai, Y. W., Wong, S. C., Abtahi, M., & Chen, P. (2010). Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. In Composites Science and Technology (Vol. 70, Issue 5, pp. 703–718). Elsevier Ltd. https://doi.org/10.1016/j.compscitech.2010.01.010
  • 29. Hu, J. J., Chao, W. C., Lee, P. Y., & Huang, C. H. (2012). Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: A scaffold membrane approach. Journal of the Mechanical Behavior of Biomedical Materials, 13, 140–155. https://doi.org/10.1016/j.jmbbm.2012.04.013
  • 30. Duan, Y., Kalluri, L., Satpathy, M., & Duan, Y. (2021). Effect of Electrospinning Parameters on the Fiber Diameter and Morphology of PLGA Nanofibers. Dental Oral Biology and Craniofacial Research, 1–7. https://doi.org/10.31487/j.dobcr.2021.02.04
  • 31. Xu, Y., Zou, L., Lu, H., & Kang, T. (2017). Effect of different solvent systems on PHBV/PEO electrospun fibers. RSC Advances, 7(7), 4000–4010. https://doi.org/10.1039/c6ra26783a
  • 32. Milleret, V., Hefti, T., Hall, H., Vogel, V., & Eberli, D. (2012). Influence of the fiber diameter and surface roughness of electrospun vascular grafts on blood activation. Acta Biomaterialia, 8(12), 4349–4356. https://doi.org/10.1016/j.actbio.2012.07.032
  • 33. Ko, Y. G., Park, J. H., Lee, J. B., Oh, H. H., Park, W. H., Cho, D., & Kwon, O. H. (2016). Growth behavior of endothelial cells according to electrospun poly(D,L-lactic-co-glycolic acid) fiber diameter as a tissue engineering scaffold. Tissue Engineering and Regenerative Medicine, 13(4), 343–351. https://doi.org/10.1007/s13770-016-0053-7
  • 34. You, Y., Min, B. M., Lee, S. J., Lee, T. S., & Park, W. H. (2005). In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 95(2), 193–200. https://doi.org/10.1002/app.21116
  • 35. Herrero-Herrero, M., Gómez-Tejedor, J. A., & Vallés-Lluch, A. (2018). PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems. European Polymer Journal, 99, 445–455. https://doi.org/10.1016/j.eurpolymj.2017.12.045
  • 36. Alfaro De Prá, M. A., Ribeiro-do-Valle, R. M., Maraschin, M., & Veleirinho, B. (2017). Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters 193, 154–157. https://doi.org/10.1016/j.matlet.2017.01.102
  • 37. Yuan, H., Zhou, Q., & Zhang, Y. (2017). Improving fiber alignment during electrospinning. Mehdi Afshari (Ed), Electrospun Nanofibers, Woodhead Publishing - Elsevier Inc., 125–147. https://doi.org/10.1016/B978-0-08-100907-9.00006-4
  • 38. Robinson, A. J., Pérez-Nava, A., Ali, S. C., González-Campos, J. B., Holloway, J. L., & Cosgriff-Hernandez, E. M. (2021). Comparative analysis of fiber alignment methods in electrospinning. In Matter (Vol. 4, Issue 3, pp. 821–844). Cell Press. https://doi.org/10.1016/j.matt.2020.12.022
  • 39. Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., Fiorillo, A., Avila, H., Wystrychowski, W., Zagalski, K., Maruszewski, M., Jones, A. L., Cierpka, L., de la Fuente, L. M., & L’Heureux, N. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8), 1542–1550. https://doi.org/10.1016/j.biomaterials.2008.11.011
  • 40. Jin, X., Geng, X., Jia, L., Xu, Z., Ye, L., Gu, Y., … Feng, Z. G. (2019). Preparation of Small-Diameter Tissue-Engineered Vascular Grafts Electrospun from Heparin End-Capped PCL and Evaluation in a Rabbit Carotid Artery Replacement Model. Macromolecular Bioscience 19(8). https://doi.org/10.1002/mabi.201900114
  • 41. Yu, Y. H., Lee, D., Hsu, Y. H., Chou, Y. C., Ueng, S. W. N., Chen, C. K., & Liu, S. J. (2020). A three-dimensional printed polycaprolactone scaffold combined with co-axially electrospun vancomycin/ceftazidime/bone morphological protein-2 sheath-core nanofibers for the repair of segmental bone defects during the masquelet procedure. International Journal of Nanomedicine, 15, 913–925. https://doi.org/10.2147/IJN.S238478
  • 42. Zhan, J., Xu, H., Zhong, Y., Wu, Q., & Liu, Z. (2020). Surface modification of patterned electrospun nanofibrous films via the adhesion of DOPA-bFGF and DOPA-ponericin G1 for skin wound healing. Materials and Design, 188. https://doi.org/10.1016/j.matdes.2019.108432
  • 43. Hua, Y., Su, Y., Zhang, H., Liu, N., Wang, Z., Gao, X., Gao, J., & Zheng, A. (2021). Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Delivery, 28(1), 1342–1355. https://doi.org/10.1080/10717544.2021.1943056
  • 44. Ji Lee, E., Ho Lee, J., Cheol Shin, Y., Hwang, D.-G., Soo Kim, J., Seong Jin, O., Jin, L., Won Hong, S., & Han, D.-W. (2014). Graphene Oxide-decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds. In Biomater. Res (Vol. 18, Issue 1).
  • 45. Oztemur, J., Ozdemir, S., & Yalcin-Enis, I. (2022). Effect of blending ratio on morphological, chemical, and thermal characteristics of PLA/PCL and PLLA/PCL electrospun fibrous webs. International Journal of Polymeric Materials and Polymeric Biomaterials. https://doi.org/10.1080/00914037.2022.2090356
  • 46. Mehrasa, M., Asadollahi, M. A., Ghaedi, K., Salehi, H., & Arpanaei, A. (2015). Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering. International Journal of Biological Macromolecules, 79, 687–695. https://doi.org/10.1016/j.ijbiomac.2015.05.050
  • 47. Zamani, F., Latifi, M., Amani-Tehran, M., & Shokrgozar, M. A. (2013). Effects of PLGA nanofibrous scaffolds structure on nerve cell directional proliferation and morphology. Fibers and Polymers, 14(5), 698–702. https://doi.org/10.1007/s12221-013-0698-y
  • 48. Nath, S. D., Son, S., Sadiasa, A., Min, Y. K., & Lee, B. T. (2013). Preparation and characterization of PLGA microspheres by the electrospraying method for delivering simvastatin for bone regeneration. International Journal of Pharmaceutics, 443(1–2), 87–94. https://doi.org/10.1016/j.ijpharm.2012.12.037
  • 49. Silva, A. T. C. R., Cardoso, B. C. O., Silva, M. E. S. R. e, Freitas, R. F. S., & Sousa, R. G. (2015). Synthesis, Characterization, and Study of PLGA Copolymer in Vitro Degradation. Journal of Biomaterials and Nanobiotechnology, 06(01), 8–19. https://doi.org/10.4236/jbnb.2015.61002
  • 50. Masaeli, R., Kashi, T. S. J., Dinarvand, R., Tahriri, M., Rakhshan, V., & Esfandyari-Manesh, M. (2016). Preparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres. In Shaheed Beheshti University of Medical Sciences and Health Services Iranian Journal of Pharmaceutical Research.
  • 51. Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2017). Alternative solvent systems for polycaprolactone nanowebs via electrospinning. Journal of Industrial Textiles, 47(1), 57–70. https://doi.org/10.1177/1528083716634032
  • 52. Hasan, M. A., Zaki, M. I., & Pasupulety, L. (2002). Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation.
  • 53. Oztemur, J., & Yalcin-Enis, I. (2021). Development of biodegradable webs of PLA/PCL blends prepared via electrospinning: Morphological, chemical, and thermal characterization. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 109(11), 1844–1856. https://doi.org/10.1002/jbm.b.34846
  • 54. Hadjizadeh, A., Ajji, A., & Bureau, M. N. (2011). Nano/micro electro-spun polyethylene terephthalate fibrous mat preparation and characterization. Journal of the Mechanical Behavior of Biomedical Materials, 4(3), 340–351. https://doi.org/10.1016/j.jmbbm.2010.10.014
  • 55. Helling, A. L., Viswanathan, P., Cheliotis, K. S., Mobasseri, S. A., Yang, Y., El Haj, A. J., & Watt, F. M. (2019). Dynamic Culture Substrates That Mimic the Topography of the Epidermal-Dermal Junction. Tissue Engineering - Part A, 25(3–4), 214–223. https://doi.org/10.1089/ten.tea.2018.0125
  • 56. Sechi, M., Vanna, S., Roggio, A. M., Siliani, Massimo, P., Salvatore, M., & Mariani, A. (2012). Development of novel cationic chitosan- and anionic alginate–coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. International Journal of Nanomedicine,5501-5516. https://doi.org/10.2147/IJN.S36684
  • 57. Vasita, R., Mani, G., Agrawal, C. M., & Katti, D. S. (2010). Surface hydrophilization of electrospun PLGA micro-/nano-fibers by blending with Pluronic® F-108. Polymer, 51(16), 3706–3714. https://doi.org/10.1016/j.polymer.2010.05.048
  • 58. Cohn, D., & Hotovely Salomon, A. (2005). Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials, 26(15), 2297–2305. https://doi.org/10.1016/j.biomaterials.2004.07.052
  • 59. Park, P. I. P., & Jonnalagadda, S. (2006). Predictors of glass transition in the biodegradable polylactide and poly-lactide-co-glycolide polymers. Journal of Applied Polymer Science, 100(3), 1983–1987. https://doi.org/10.1002/app.22135
  • 60. Peng, Z., Ye, L., & Ade, H. (2022). Understanding, quantifying, and controlling the molecular ordering of semiconducting polymers: From novices to experts and amorphous to perfect crystals. In Materials Horizons (Vol. 9, Issue 2, pp. 577–606). Royal Society of Chemistry. https://doi.org/10.1039/d0mh00837k
  • 61. Yalcin Enis, I., Horakova, J., Gok Sadikoglu, T., Novak, O., & Lukas, D. (2017). Mechanical investigation of bilayer vascular grafts electrospun from aliphatic polyesters. Polymers for Advanced Technologies 28(2), 201–213. https://doi.org/10.1002/pat.3875
  • 62. Wu, H., Fan, J., Chu, C. C., & Wu, J. (2010). Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. Journal of Materials Science: Materials in Medicine, 21(12), 3207–3215. https://doi.org/10.1007/s10856-010-4164-8
  • 63. Nezarati, R. M., Eifert, M. B., Dempsey, D. K., & Cosgriff-Hernandez, E. (2015). Electrospun vascular grafts with improved compliance matching to native vessels. Journal of Biomedical Materials Research - Part B Applied Biomaterials 103(2), 313–323. https://doi.org/10.1002/jbm.b.33201
  • 64. Rodriguez-Soto, M. A., Suarez, N. A., Riveros, A., Garcia-Brand, A. J., Munoz-Camargo, C., Cruz, J. C., & Briceno, J. C. (2021). Mechanical characterization of novel vascular grafts: Approaching to the native vessel behavior. 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering, CI-IB and BI 2021. https://doi.org/10.1109/CI-IBBI54220.2021.9626102
  • 65. Tang, J., Bao, L., Li, X., Chen, L., & Hong, F. F. (2015). Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. Journal of Materials Chemistry B, 3(43), 8537–8547. https://doi.org/10.1039/c5tb01144b
  • 66. Caves, J. M., Kumar, V. A., Martinez, A. W., Kim, J., Ripberger, C. M., Haller, C. A., & Chaikof, E. L. (2010). The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts. Biomaterials, 31(27), 7175–7182. https://doi.org/10.1016/j.biomaterials.2010.05.014
  • 67. Chaparro, F. J., Matusicky, M. E., Allen, M. J., & Lannutti, J. J. (2016). Biomimetic microstructural reorganization during suture retention strength evaluation of electrospun vascular scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 104(8), 1525–1534. https://doi.org/10.1002/jbm.b.33493
  • 68. Grasl, C., Stoiber, M., Röhrich, M., Moscato, F., Bergmeister, H., & Schima, H. (2021). Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas. Materials Science and Engineering C 124. https://doi.org/10.1016/j.msec.2021.112085
  • 69. Ercolani, E., del Gaudio, C., & Bianco, A. (2015). Vascular tissue engineering of small-diameter blood vessels: Reviewing the electrospinning approach. Journal of Tissue Engineering and Regenerative Medicine 9(8), 861–888. https://doi.org/10.1002/term.1697
Toplam 69 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Giyilebilir Malzemeler
Bölüm Makaleler
Yazarlar

Suzan Özdemir 0000-0001-7369-2907

Janset Öztemur 0000-0002-7727-9172

Hande Sezgin 0000-0002-2671-2175

İpek Yalcin Enis 0000-0002-7215-3546

Proje Numarası 121M309 (TUBITAK), 43368 (ITU-BAP), 44230 (ITU-GAP)
Erken Görünüm Tarihi 30 Eylül 2024
Yayımlanma Tarihi 30 Eylül 2024
Gönderilme Tarihi 19 Nisan 2023
Kabul Tarihi 9 Kasım 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 34 Sayı: 3

Kaynak Göster

APA Özdemir, S., Öztemur, J., Sezgin, H., Yalcin Enis, İ. (2024). Morphological and Mechanical Assessment of Electrospun PLGA Vascular Scaffolds. Textile and Apparel, 34(3), 222-230. https://doi.org/10.32710/tekstilvekonfeksiyon.1284898

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.